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Background
Overview on Approaches

Generic Retrieval Model
“Given a query, (Representations) induce a (Relevance Estimation),

which orders (Identifiers) that map to (Results). ”

Traditional Neural

RepresentationL. Metric Learning “Index Learning” “Generative L.”

Example BM25 Bi-Encoder [5] Cross-Encoder [5] Diff. Index [6] Infinite Index [1]

Representations Sparse Repr. Dense Repr. – – –

Relevance Estim. Lexical Match Inner Product Sp. Direct – –

Identifiers Doc-IDs Doc-IDs Doc-IDs Gen. Doc-IDs –

Results Documents Documents Documents Documents Gen. Docs.

Efficiency

Effectiveness

Bi-Encoders offer a good tradeoff between efficiency and effectiveness.
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Motivation
Problems of Bi-Encoders

Current Bi-Encoders are subject to three problems:

1. Task discrepancy
- Training: either one or multiple, equally relevant positives
- Inference: multiple positives with graded relevance

Contribution: contrastive ranking-aware loss

2. Domain discrepancy
- Queries: short, simple; representation computed live
- Documents: long, complex; representations can be cached

Contribution: decoupled encoders with compatible latent spaces

3. Scale discrepancy
- Usually multiple (q,d) form a batch, with docs from other queries being
implicit negatives; but: one query may has multiple relevant docs in reality

- This training setup is mostly due to sparsity of ground truth labels

Contribution: knowledge distillation with graded, single-query batches
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(I) Fixing Task Discrepancy



Model Architecture
Contrastive Learning

Objective: given an anchor (query q) and a positive (document dp) and
negative (document dn) example, minimize the distance between anchor and
positive and maximize the distance between anchor and negative.

qη

dη
p

dη
n

qη

dη
p

dη
n

Contrastive learning can be extended to multiple positives and negatives.
But: does not discriminate in-class (i.e., trains set retrieval only).
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Model Architecture
Contrastive Ranking-Aware Learning

Ranking information can be directly integrated into the loss [2, 7]:

lτ,k(q,D) = log
exp(qη · dηi /τ)∑b
j=1 exp(qη · d

η
j /τ)

For each query q…

… using a standard contrastive loss

… we inject distant ranking supervision rq(·) (oracle),
… such that each of the top-k documents (positives)
… is contrasted by each document following it (negatives).

Standard BERT-based text encoders are used for ηq and ηd.
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Model Architecture
Contrastive Ranking-Aware Learning

k∑
i=3

1 2 3 4 5 6 7 8 9 10

d14 d1 d27 d5 d9 d12 d127 d62 d49 d45

For example, at iteration 3 of the loss computation ...

… with a batch of 10 documents from D,

… ranked by rq(·) given as above,
… documents at ranks 1, 2 are ignored (treated in previous iterations),
… the document at rank 3 is treated as positive,
… and is contrasted by documents at ranks 4...b as negatives.

Analogously, at iteration 4, ranks 1, 2, 3 are ignored,
rank 4 is treated positive, and ranks 5...b as negatives.
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Model Architecture
Loss Properties

The loss requires the model to learn a latent space such that:

(1) maximize similarity of query to positive documents
(
qη · dηp ≫ 0

)
(2) minimize similarity sum of query to negative documents (

∑
qη · dηn → 0)

(3) (1) and (2) are competing because of ranking supervision
- each negative sample up to k becomes positive in a later iteration
- thus (1) and (2) need to balance out between iterations dependent on rank
- the earlier in the ranking, the more important (1) is over (2) for loss minimum

The global loss is the average over all top-k ranks over all queries.
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Model Architecture
Summary

In summary, the proposed CoRAL loss resembles the target task of retrieval
task more closely than previous contrastive pretraining approaches.

Figure 1: UMAP representation of latent space from models trained with L1, InfoNCE,
and Ranked Contrastive Loss for temperature classification from webcam images [7].

Contribution
Ranked contrastive loss has only been applied for single target rank con-
cepts; application to multi-faceted rank objectives (retrieval) is novel.
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(II) Fixing Domain Discrepancy



Decoupled Representations
Multimodal Training

Query q

Document d

Query Encoder ηq

Doc Encoder ηd

Projection Head

Projection Head
qηq · dηd

– Query encoder can be small & fast for efficiency
– Document encoder can be large & complex for effectiveness
– Multimodal training with projection heads allows for joint latent space

We can even omit the projection head of the query encoder and
utilize a freezed pre-trained model (e.x. distilBERT).

Contribution
Utilize multimodal training to derive both efficient and effective bi-encoder
models, taking inspiration from recent multimodal text/image models.
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(III) Fixing Scale Discrepancy



Training Setup
Batch Construction

Traditional Setup

– Construct batch from (q,d) positive pairs; documents from other queries
are treated as implicit negatives

– Problem: we can not ensure ‘correct’ negatives; we only learn top-1
retrieval

Improved Setup

– Single-query batches based on rank supervision
– Rank supervision induced by an oracleΩ (teacher model, ground truth, ...)
– Top-k are used as positives, rest of ranking as negatives
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Training Setup
Sources of Rank Supervision

– Synthetic rankings from teacher models (e.x. monoT5/duoT5 [3])
- infinitely available since it can be synthesized at training time
- but: trained model cannot exceed the effectiveness of the teacher model

– Direct rankings from human annotations (e.x. TREC)
- sparse, and not suitable for training; evaluation only

– Pseudo rankings from large-scale query-logs (e.x. AQL [4])
- allows for generalization beyond teacher model
- vast amount of queries, but: limited depth per query

Idea
Can we generate training data by combining “real” results from query logs
and augment with “synthetic” results from teacher models?

Gienapp/Deckers/Potthast CoRAL : 14



Current Status

Done
– Literature review, theoretical foundation
– Model implementation
– Convergence tested on small toy data

In progress
– Data curation & pretrained model selection
– Code optimization for large-scale training

Todo
– Batch sampling & training
– Ablation studies & evaluation
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Conclusion
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Summary
We adress the three main challenges of representation learning for retrieval
using a ranked contrastive loss in conjunction with decoupled encoders and
knowledge distillation for data augmentation.
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