Chapter ML:IX (continued)

IX. Deep Learning

- □ Elements of Deep Learning
- Convolutional Neural Networks
- Autoencoder Networks
- □ Recurrent Neural Networks
- □ RNNs for Machine Translation
- Attention Mechanism
- □ Self Attention and Transformers
- □ Transformer Language Models

ML:IX-29 Deep Learning © STEIN/VÖLSKE 2022

Notation I

ML:IX-30 Deep Learning © STEIN/VÖLSKE 2022

Notation I (continued)

ML:IX-31 Deep Learning © STEIN/VÖLSKE 2022

ML:IX-32 Deep Learning © STEIN/VÖLSKE 2022

Notation I (continued)

ML:IX-34 Deep Learning © STEIN/VÖLSKE 2022

Notation I (continued)

ML:IX-36 Deep Learning © STEIN/VÖLSKE 2022

Notation I (continued)

Remarks:

- A hidden vector is the result of an intermediate computation in a multilayer network. If sequences are processed, hidden vectors may be distinguished as hidden *encoder* vectors (which consider the input at a certain time step) and hidden *decoder* vectors (which generate the output at a certain time step).
- □ A predefined hidden vector is used to for initialization purposes for the first hidden layer in a sequence-processing multilayer network. Typically, it is a constant vector of zeroes.
- Attention vectors combine the information in hidden vectors in a way that is specific to a certain time step. Keyword: vanishing gradient problem
- A target vector (or target vector sequence) encodes the desired output.
 Keywords: supervised learning, ground truth

ML:IX-38 Deep Learning © STEIN/VÖLSKE 2022

Types of Learning Tasks [Recap]

(S1) sequence → class

sentence $\rightarrow \{\oplus, \ominus\}$ i love my cat $\rightarrow \oplus$

(S2) $class \rightarrow sequence$

 $\{\oplus,\ominus\}\to \text{sentence}$

 $\oplus \to \mathrm{i}$ love my cat

 $\text{(S3)} \quad \text{sequence} \rightarrow \text{sequence}$

English sentence → German sentence

i love my cat \rightarrow ich liebe meine katze

RNN Sequence Encoding

- \Box One *p*-dimensional input vector **x**.
- \Box One hidden layer (general: d-1 hidden layers, i.e., d active layers).
- \Box One k-dimensional output vector $\mathbf{y}(\mathbf{x})$.

ML:IX-40 Deep Learning © STEIN/VÖLSKE 2022

RNN Sequence Encoding (continued)

- \Box Sequence of p-dimensional input vectors $[\mathbf{x}(1), \dots, \mathbf{x}(T)]$.
- One hidden layer that is recurrently updated.
- figcup One k-dimensional output vector $\mathbf{y}([\mathbf{x}(1),\ldots,\mathbf{x}(T)])$ or \mathbf{y} .

ML:IX-41 Deep Learning © STEIN/VÖLSKE 2022

RNN Sequence Encoding (continued)

ML:IX-42 Deep Learning © STEIN/VÖLSKE 2022

RNN Sequence Encoding (continued)

ML:IX-43 Deep Learning © STEIN/VÖLSKE 2022

Remarks:

- lacktriangled An input sequence is written in brackets, $[\mathbf{x}(1),\ldots,\mathbf{x}(T)]$, where $\mathbf{x}(t),t=1,\ldots,T$, denotes the input vector at time step t.
- □ The words in the input sequence are usually one-hot-encoded, i.e., by a *p*-dimensional input vector with a "1" whose position indicates the word, and zeros elsewhere.

ML:IX-44 Deep Learning © STEIN/VÖLSKE 2022

RNN Sequence Encoding (continued) [encodin

[encoding overview]

Input encoding over t.

ML:IX-45 Deep Learning © STEIN/VÖLSKE 2022

RNN Sequence Encoding (continued) [encoding overview]

Input encoding over t.

ML:IX-46 Deep Learning © STEIN/VÖLSKE 2022

RNN Sequence Encoding (continued)

[encoding overview]

Input encoding over t.

ML:IX-47 Deep Learning © STEIN/VÖLSKE 2022

RNN Sequence Encoding (continued) [encoding overview]

Input encoding over t.

ML:IX-48 Deep Learning © STEIN/VÖLSKE 2022

RNN Sequence Encoding (continued) [e

[encoding overview]

Input encoding over t.

ML:IX-49 Deep Learning © STEIN/VÖLSKE 2022

RNN Sequence Encoding (continued)

[encoding overview]

Input encoding over t.

ML:IX-50 Deep Learning © STEIN/VÖLSKE 2022

RNN Sequence Encoding (continued) [encoding overview]

Input encoding over t.

ML:IX-51 Deep Learning © STEIN/VÖLSKE 2022

RNN Sequence Encoding (continued) [encoding overview]

Input encoding over t.

The hidden layer at subsequent time steps.

ML:IX-52 Deep Learning © STEIN/VÖLSKE 2022

RNN Sequence Encoding (continued) [encoding overview]

Input encoding over t.

The hidden layer at subsequent time steps.

ML:IX-53 Deep Learning © STEIN/VÖLSKE 2022

RNN Sequence Encoding (continued) [encoding overview]

Input encoding over t.

The hidden layer at subsequent time steps.

ML:IX-54 Deep Learning © STEIN/VÖLSKE 2022

RNN Sequence Encoding (continued) [encoding overview]

Input encoding over t.

The hidden layer at subsequent time steps.

ML:IX-55 Deep Learning © STEIN/VÖLSKE 2022

RNN Sequence Encoding (continued) [encoding overview]

Input encoding over t.

The hidden layer at subsequent time steps.

ML:IX-56 Deep Learning © STEIN/VÖLSKE 2022

RNN Sequence Encoding (continued)

[encoding overview]

Input encoding over t.

The hidden layer at subsequent time steps.

ML:IX-57 Deep Learning © STEIN/VÖLSKE 2022

RNN Sequence Encoding (continued) [encoding overview]

Input encoding over t.

The hidden layer at subsequent time steps.

ML:IX-58 Deep Learning © STEIN/VÖLSKE 2022

RNN Sequence Encoding (continued) [encoding overview]

Input encoding over t.

The hidden layer at subsequent time steps.

ML:IX-59 Deep Learning © STEIN/VÖLSKE 2022

(S1) Sequence-to-Class: Sentiment Classification

- ightharpoonup I love my cat. $ightharpoonup \oplus$
- \Box Cats and dogs lap water. $o \oplus$
- \Box It is raining cats and dogs. \rightarrow \ominus
- \Box Cats and dogs are not allowed. \to \ominus
- \Box Cats and dogs have always been natural enemies. \rightarrow \ominus

Vocabulary: (allowed always and are been cat cats dogs enemies have i is it lap love my natural not raining water)

ML:IX-60 Deep Learning © STEIN/VÖLSKE 2022

(S1) Sequence-to-Class: Sentiment Classification (continued)

□ I love my cat.

 $\rightarrow \oplus$

Cats and dogs lap water.

 $\rightarrow \oplus$

□ It is raining cats and dogs.

 \rightarrow \ominus

□ Cats and dogs are not allowed.

- \rightarrow \ominus
- □ Cats and dogs have always been natural enemies.
- \rightarrow \ominus

Vocabulary:

(allowed always and are been cat cats dogs enemies have i is it lap love my natural not raining water)

Input:

$$[\mathbf{x}(1),\ldots,\mathbf{x}(4)] = \begin{bmatrix} \begin{pmatrix} 0 \\ \vdots \\ 1 \\ 0 \\ \vdots \end{pmatrix}, \begin{pmatrix} 0 \\ \vdots \\ 1 \\ 0 \\ \vdots \end{pmatrix}, \begin{pmatrix} 0 \\ \vdots \\ 1 \\ 0 \\ \vdots \end{pmatrix}, \begin{pmatrix} 0 \\ \vdots \\ 1 \\ 0 \\ \vdots \end{pmatrix} \end{bmatrix}$$

 $\hat{=}$ [word_11, word_15, word_16, word_6]

 $\widehat{=}$ I love my cat

(S1) Sequence-to-Class: Sentiment Classification (continued)

□ I love my cat.

 $\rightarrow \oplus$

Cats and dogs lap water.

 \rightarrow \oplus

□ It is raining cats and dogs.

 \rightarrow \in

□ Cats and dogs are not allowed.

- \rightarrow \ominus
- riangle Cats and dogs have always been natural enemies. riangle riangle

Vocabulary:

(allowed always and are been cat cats dogs enemies have i is it lap love my natural not raining water)

Input:

$$[\mathbf{x}(1), \dots, \mathbf{x}(4)] = \begin{bmatrix} \begin{pmatrix} 0 \\ \vdots \\ 1 \\ 0 \\ \vdots \end{pmatrix}, \begin{pmatrix} 0 \\ \vdots \\ 1 \\ 0 \\ \vdots \end{pmatrix}, \begin{pmatrix} 0 \\ \vdots \\ 1 \\ 0 \\ \vdots \end{pmatrix}, \begin{pmatrix} 0 \\ \vdots \\ 1 \\ 0 \\ \vdots \end{pmatrix} \end{bmatrix}$$

- $\hat{=}$ [word_11, word_15, word_16, word_6]
- $\hat{=}$ I love my cat

Output:

$$\mathbf{y}\Big([\mathbf{x}(1),\ldots,\mathbf{x}(4)]\Big) = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$$

Target: $\mathbf{c} = \begin{pmatrix} \oplus \\ \cdot \end{pmatrix}$

(S1) Sequence-to-Class Mapping with RNNs

Input:

$$[\mathbf{x}(1), \dots, \mathbf{x}(T)]$$

Hidden:

$$\mathbf{y}^{\mathsf{h}}(t) = \boldsymbol{\sigma}\left(W^{\mathsf{h}}\begin{pmatrix}\mathbf{y}^{\mathsf{h}}(t-1)\\\mathbf{x}(t)\end{pmatrix}\right), t = 1, \dots, T$$

Output:

$$\mathbf{y} = \boldsymbol{\sigma_1} \left(W^{\mathsf{o}} \, \mathbf{y}^{\mathsf{h}}(T) \right)$$

ML:IX-63 Deep Learning

Target:

(S1) Sequence-to-Class Mapping with RNNs (continued)

Input:

$$[\mathbf{x}(1), \dots, \mathbf{x}(T)]$$

Hidden:

$$\mathbf{y}^{\mathsf{h}}(t) = \boldsymbol{\sigma} \left(W^{\mathsf{h}} \begin{pmatrix} \mathbf{y}^{\mathsf{h}}(t-1) \\ \mathbf{x}(t) \end{pmatrix} \right), t = 1, \dots, T$$

Target:

Output:

$$\mathbf{y} = \boldsymbol{\sigma}_1 \left(W^{\mathsf{o}} \, \mathbf{y}^{\mathsf{h}}(T) \right)$$

(S1) Sequence-to-Class Mapping with RNNs (continued)

Input:

$$[\mathbf{x}(1), \dots, \mathbf{x}(T)]$$

Hidden:

$$\mathbf{y}^{\mathsf{h}}(t) = \boldsymbol{\sigma} \left(W^{\mathsf{h}} \begin{pmatrix} \mathbf{y}^{\mathsf{h}}(t-1) \\ \mathbf{x}(t) \end{pmatrix} \right), t = 1, \dots, T$$

Target:

Output:

$$\mathbf{y} = \sigma_1 \left(\mathbf{W}^{\mathsf{o}} \, \mathbf{y}^{\mathsf{h}}(T) \right)$$

(S1) Sequence-to-Class Mapping with RNNs (continued)

Input:

$$[\mathbf{x}(1), \dots, \mathbf{x}(T)]$$

Hidden:

$$\mathbf{y}^{\mathsf{h}}(t) = \boldsymbol{\sigma}\left(W^{\mathsf{h}}\begin{pmatrix}\mathbf{y}^{\mathsf{h}}(t-1)\\\mathbf{x}(t)\end{pmatrix}\right), t = 1, \dots, T$$

Target:

Output:

$$\mathbf{y} = \boldsymbol{\sigma}_1 \left(W^{\mathsf{o}} \, \mathbf{y}^{\mathsf{h}}(T) \right)$$

(S1) Sequence-to-Class Mapping with RNNs (continued)

Input:

$$[\mathbf{x}(1), \dots, \mathbf{x}(T)]$$

Hidden:

$$\mathbf{y}^{\mathsf{h}}(t) = \boldsymbol{\sigma}\left(W^{\mathsf{h}}\begin{pmatrix}\mathbf{y}^{\mathsf{h}}(t-1)\\\mathbf{x}(t)\end{pmatrix}\right), t = 1, \dots, T$$

Output:

$$\mathbf{y} = \boldsymbol{\sigma}_1 \left(W^{\mathsf{o}} \, \mathbf{y}^{\mathsf{h}}(T) \right)$$

ML:IX-67 Deep Learning

Target:

 \mathbf{C}

(S1) Sequence-to-Class Mapping with RNNs (continued)

Input:

$$[\mathbf{x}(1),\ldots,\mathbf{x}(4)]$$

Hidden:

$$\mathbf{y}^{\mathsf{h}}(t) = \boldsymbol{\sigma}\left(W^{\mathsf{h}}\begin{pmatrix}\mathbf{y}^{\mathsf{h}}(t-1)\\\mathbf{x}(t)\end{pmatrix}\right), t = 1, \dots, 4$$

Target:

c

Output:

$$\mathbf{y} = \boldsymbol{\sigma}_1 \left(\mathbf{W}^{\mathsf{o}} \, \mathbf{y}^{\mathsf{h}}(4) \right)$$

Remarks:

- \Box We denote $\mathbf{y}^{\mathsf{h}}(0)$ not as input since this kind of predefined hidden vector does not contain any "actual knowledge", but is usually initialized as vector of zeros.
- To keep the illustrations clear we use the bag-of-words model for representing (= embedding) the words as vectors $\mathbf{x}(t)$. In practice, however, one considers semantically stronger (language-model-based) embeddings, which also encode information about neighborhoods and occurrence probabilities. In this regard, either a previously computed embedding can be used, or the

embedding can be learned along with the task, end-to-end.

Recap. $\sigma_1()$ denotes the softmax function. $\sigma_1: \mathbf{R}^k \to \Delta^{k-1}$, generalizes the logistic (sigmoid) function to k dimensions (to k exclusive classes), where $\sigma_1(\mathbf{z})|_i = e^{z_i}/\sum_{j=1}^k e^{z_j}$. [Wikipedia] $\Delta^{k-1} \subset \mathbf{R}^k$ denotes the standard k-1-simplex, which contains all k-tuples with non-negative elements that sum to 1. [Wikipedia]

ML:IX-69 Deep Learning © STEIN/VÖLSKE 2022

The IGD Algorithm for Sequence-to-Class Tasks [IGD_{c2seq}]

Algorithm: IGD_{seq2c} Incremental Gradient Descent for RNNs at seq2class tasks. Input: D Multiset of examples $([\mathbf{x}(1),\ldots,\mathbf{x}(T)],\mathbf{c})$ with $\mathbf{x}(t) \in \mathbf{R}^p, \ \mathbf{c} \in \{0,1\}^k$. Learning rate, a small positive constant. Output: $\mathbf{y}^h(0), W^h, W^o$ Weights of predefined hidden vector and matrices. (= hypothesis)

- 1. $initialize_random_weights(\mathbf{y}^h(0), W^h, W^o)$, $t_{training} = 0$
- 2. REPEAT
- 3. $t_{\text{training}} = t_{\text{training}} + 1$
- 4. FOREACH $([\mathbf{x}(1), \dots, \mathbf{x}(T)], \mathbf{c}) \in D$ DO
- 5.

Model function evaluation.

- 6. Calculation of residuals at all layers.
- 7. Calculation of derivatives.
- 8. Parameter update $\hat{=}$ one gradient step down.
- 9. ENDDO
- 10. UNTIL(convergence($D, \mathbf{y}(\cdot), t_{\text{training}}$))
- 11. $return(\mathbf{y}^h(0), W^h, W^o)$

The IGD Algorithm for Sequence-to-Class Tasks (continued) [IGD_{c2sed}]

Algorithm: IGD_{seg2c} Incremental Gradient Descent for RNNs at seg2class tasks. Input: Multiset of examples $([\mathbf{x}(1),\ldots,\mathbf{x}(T)],\mathbf{c})$ with $\mathbf{x}(t)\in\mathbf{R}^p,\ \mathbf{c}\in\{0,1\}^k$. DLearning rate, a small positive constant. η $\mathbf{y}^h(0), W^h, W^o$ Weights of predefined hidden vector and matrices. (= hypothesis) Output:

```
initialize_random_weights(\mathbf{y}^h(0), W^h, W^o), t_{\text{training}} = 0
```

```
2.
   REPEAT
```

- 3. $t_{\text{training}} = t_{\text{training}} + 1$
- FOREACH $([\mathbf{x}(1), \dots, \mathbf{x}(T)], \mathbf{c}) \in D$ DO 4.
- FOR t=1 TO T DO // forward propagation 5.

$$\mathbf{y}^{\mathsf{h}}(t) = \sigma \left(W^{\mathsf{h}} \begin{pmatrix} \mathbf{y}^{\mathsf{h}}(t-1) \\ \mathbf{x}(t) \end{pmatrix} \right)$$
 ENDDO

$$y = \sigma_1 (W^o y^h(T))$$

- Calculate $\delta^{\rm o}$, $\delta^{\rm h}$ // backpropagation (Steps 6+7) [like $|{
 m GD}_{
 m MLP_2}|$ 6.
- Calculate $\Delta y^h(0)$, ΔW^h , ΔW^o 7.
- $y^{h}(0) = y^{h}(0) + \Delta y^{h}(0), \quad W^{h} = W^{h} + \Delta W^{h}, \quad W^{o} = W^{o} + \Delta W^{o}$ 8.
- 9. ENDDO
- 10. **UNTIL**(convergence($D, \mathbf{y}(\cdot), t_{\mathsf{training}}$))
- $return(\mathbf{v}^h(0), W^h, W^o)$ 11.

Types of Learning Tasks [Recap]

(S1) $sequence \rightarrow class$

sentence $\rightarrow \{\oplus, \ominus\}$ i love my cat $\rightarrow \oplus$

(S2) class → sequence

 $\{\oplus,\ominus\}\to \text{sentence}$

 $\oplus \to \mathrm{i}$ love my cat

(S3) $sequence \rightarrow sequence$

English sentence → German sentence

i love my cat \rightarrow ich liebe meine katze

RNN Sequence Decoding

- \Box One *p*-dimensional input vector **x**.
- \Box One hidden layer (general: d-1 hidden layers, i.e., d active layers).
- \Box One *k*-dimensional output vector $\mathbf{y}(\mathbf{x})$.

ML:IX-73 Deep Learning © STEIN/VÖLSKE 2022

RNN Sequence Decoding (continued)

- \Box One *p*-dimensional input vector **x**.
- One hidden and one output layer, which are recurrently updated.
- \square Sequence of k-dimen. output vectors $[\mathbf{y}(\mathbf{x},1),\ldots,\mathbf{y}(\mathbf{x},\tau)]$ or $[\mathbf{y}(1),\ldots,\mathbf{y}(\tau)]$.

ML:IX-74 Deep Learning © STEIN/VÖLSKE 2022

RNN Sequence Decoding (continued)

ML:IX-75 Deep Learning

© STEIN/VÖLSKE 2022

RNN Sequence Decoding (continued)

ML:IX-76 Deep Learning

© STEIN/VÖLSKE 2022

Remarks:

- \Box An output sequence is written in brackets, $[\mathbf{y}(1), \dots, \mathbf{y}(\tau)]$, where $\mathbf{y}(t), t = 1, \dots, \tau$, denotes the output vector at time step t.
- The words in the output sequence are usually one-hot-encoded, i.e., by a k-dimensional output vector with a "1" whose position indicates the word, and zeros elsewhere.
- \Box If the input, \mathbf{x} , is clear from the context, we usually note $\mathbf{y}(\mathbf{x},t)$ as $\mathbf{y}(t)$.
- The matrix W^i is necessary to embed the typically low-dimensional input vector \mathbf{x} regarding the high-dimensional hidden vectors \mathbf{y}^h : $\mathbf{y}^h(0) = \boldsymbol{\sigma}(W^i\mathbf{x})$.
- The parameter τ in $\mathbf{y}(\tau)$ is unknown. More specifically, the generation process terminates at that time step τ for which $\mathbf{y}(\tau) = (0, 0, \dots, 0, 1)^T$ ($\hat{=} < \text{end} >$).

 τ does not have to be equal to T.

ML:IX-77 Deep Learning © STEIN/VÖLSKE 2022

RNN Sequence Decoding (continued) [decoding overview]

$$t = 0$$

Output decoding over t.

RNN Sequence Decoding (continued)

[decoding overview]

t = 0

Output decoding over t.

RNN Sequence Decoding (continued) [decoding overview]

Output decoding over t.

ML:IX-80 Deep Learning © STEIN/VÖLSKE 2022

RNN Sequence Decoding (continued)

[decoding overview]

Output decoding over t.

ML:IX-81 Deep Learning © STEIN/VÖLSKE 2022

RNN Sequence Decoding (continued)

[decoding overview]

Output decoding over t.

ML:IX-82 Deep Learning © STEIN/VÖLSKE 2022

RNN Sequence Decoding (continued) [deco

[decoding overview]

t = 1

Output decoding over t.

RNN Sequence Decoding (continued) [decoding overview]

t = 1

Output decoding over t.

RNN Sequence Decoding (continued) [decoding overview]

Output decoding over t.

ML:IX-85 Deep Learning © STEIN/VÖLSKE 2022

RNN Sequence Decoding (continued)

[decoding overview]

Output decoding over t.

ML:IX-86 Deep Learning © STEIN/VÖLSKE 2022

RNN Sequence Decoding (continued) [decoding overview]

t = 0

Output decoding over t.

Hidden and output layer at subsequent time steps.

ML:IX-87 Deep Learning © STEIN/VÖLSKE 2022

RNN Sequence Decoding (continued) [decoding overview]

t = 0

Output decoding over t.

Hidden and output layer at subsequent time steps.

RNN Sequence Decoding (continued) [decoding overview]

Output decoding over t.

Hidden and output layer at subsequent time steps.

ML:IX-89 Deep Learning © STEIN/VÖLSKE 2022

RNN Sequence Decoding (continued) [decoding overview]

Output decoding over t.

Hidden and output layer at subsequent time steps.

ML:IX-90 Deep Learning © STEIN/VÖLSKE 2022

RNN Sequence Decoding (continued) [decoding overview]

Output decoding over t.

Hidden and output layer at subsequent time steps.

ML:IX-91 Deep Learning © STEIN/VÖLSKE 2022

RNN Sequence Decoding (continued) [decoding overview]

t = 1

Output decoding over t.

Hidden and output layer at subsequent time steps.

RNN Sequence Decoding (continued) [decoding overview]

t = 1

Output decoding over t.

Hidden and output layer at subsequent time steps.

RNN Sequence Decoding (continued) [decoding overview]

Output decoding over t.

Hidden and output layer at subsequent time steps.

ML:IX-94 Deep Learning © STEIN/VÖLSKE 2022

RNN Sequence Decoding (continued) [decoding overview]

Output decoding over t.

Hidden and output layer at subsequent time steps.

ML:IX-95 Deep Learning © STEIN/VÖLSKE 2022

RNN Sequence Decoding (continued) [decoding overview]

Output decoding over t.

Hidden and output layer at subsequent time steps.

y(2)

ML:IX-96 Deep Learning © STEIN/VÖLSKE 2022

(S2) Class-to-Sequence: Text Generation

- \oplus \rightarrow I love my cat.
- \oplus \rightarrow Cats and dogs lap water.
- \ominus \rightarrow It is raining cats and dogs.
- \ominus \rightarrow Cats and dogs are not allowed.
- \rightarrow Cats and dogs have always been natural enemies.

```
Vocabulary: (allowed always and are been cat cats dogs enemies have i is
    it lap love my natural not raining water <start> <end>)
```

ML:IX-97 Deep Learning © STEIN/VÖLSKE 2022

(S2) Class-to-Sequence: Text Generation (continued)

- $\oplus \quad \to \mbox{ I love my cat.}$
- \oplus \to Cats and dogs lap water.
- \ominus \rightarrow It is raining cats and dogs.
- \rightarrow Cats and dogs are not allowed.
- \rightarrow Cats and dogs have always been natural enemies.

Vocabulary: (allowed always and are been cat cats dogs enemies have i is it lap love my natural not raining water <start> <end>)

Input:
$$[[[[\mathbf{x}, \ \mathbf{y}(0)], \ \mathbf{y}(1)], \ \mathbf{y}(2)], \ldots], \ \mathbf{y}(\tau-1)], \quad \mathbf{x} = \begin{pmatrix} \oplus \\ \cdot \end{pmatrix}$$

Output: $[\mathbf{y}(1),\mathbf{y}(2),\mathbf{y}(3),\ldots,\mathbf{y}(au)], \quad \mathbf{y}(0)\equiv\mathbf{c}(0) \ \widehat{=}\ < \mathtt{start}>, \quad \mathbf{y}(au) \ \widehat{=}\ \mathbf{c}(5) \ \widehat{=}\ < \mathtt{end}>$

(S2) Class-to-Sequence: Text Generation (continued)

- \oplus \rightarrow I love my cat.
- \oplus \to Cats and dogs lap water.
- \rightarrow It is raining cats and dogs.
- \ominus \rightarrow Cats and dogs are not allowed.
- \rightarrow Cats and dogs have always been natural enemies.

Vocabulary: (allowed always and are been cat cats dogs enemies have i is it lap love my natural not raining water <start> <end>)

Input:
$$[[[\mathbf{x}, \mathbf{y}(0)], \mathbf{y}(1)], \mathbf{y}(2)], \ldots], \mathbf{y}(\tau-1)], \quad \mathbf{x} = \begin{pmatrix} \oplus \\ \cdot \end{pmatrix}$$

Output: $[\mathbf{y}(1), \mathbf{y}(2), \mathbf{y}(3), \dots, \mathbf{y}(\tau)], \quad \mathbf{y}(0) \equiv \mathbf{c}(0) \stackrel{\frown}{=} \langle \mathbf{start} \rangle, \quad \mathbf{y}(\tau) \stackrel{\frown}{=} \mathbf{c}(5) \stackrel{\frown}{=} \langle \mathbf{end} \rangle$

(S2) Class-to-Sequence: Text Generation (continued)

- $\oplus \quad \to \mbox{ I love my cat.}$
- \oplus \to Cats and dogs lap water.
- \rightarrow It is raining cats and dogs.
- \rightarrow Cats and dogs are not allowed.
- \rightarrow Cats and dogs have always been natural enemies.

Vocabulary: (allowed always and are been cat cats dogs enemies have i is it lap love my natural not raining water <start> <end>)

Input:
$$[[[\mathbf{x}, \mathbf{y}(0)], \mathbf{y}(1)], \mathbf{y}(2)], \ldots], \mathbf{y}(\tau-1)], \quad \mathbf{x} = \begin{pmatrix} \oplus \\ \cdot \end{pmatrix}$$

Output: $[\mathbf{y}(1), \mathbf{y}(2), \mathbf{y}(3), \dots, \mathbf{y}(\tau)], \quad \mathbf{y}(0) \equiv \mathbf{c}(0) \stackrel{\frown}{=} \langle \mathbf{start} \rangle, \quad \mathbf{y}(\tau) \stackrel{\frown}{=} \mathbf{c}(5) \stackrel{\frown}{=} \langle \mathbf{end} \rangle$

(S2) Class-to-Sequence: Text Generation (continued)

- \oplus \rightarrow I love my cat.
- \oplus \to Cats and dogs lap water.
- \rightarrow It is raining cats and dogs.
- \rightarrow Cats and dogs are not allowed.
- \rightarrow Cats and dogs have always been natural enemies.

Vocabulary: (allowed always and are been cat cats dogs enemies have i is it lap love my natural not raining water <start> <end>)

Input:
$$[[[\mathbf{x}, \mathbf{y}(0)], \mathbf{y}(1)], \mathbf{y}(2)], \ldots], \mathbf{y}(\tau - 1)], \quad \mathbf{x} = \begin{pmatrix} \oplus \\ \cdot \end{pmatrix}$$

Output: $[\mathbf{y}(1), \mathbf{y}(2), \mathbf{y}(3), \dots, \mathbf{y}(\tau)], \quad \mathbf{y}(0) \equiv \mathbf{c}(0) \stackrel{\frown}{=} \langle \mathbf{start} \rangle, \quad \mathbf{y}(\tau) \stackrel{\frown}{=} \mathbf{c}(5) \stackrel{\frown}{=} \langle \mathbf{end} \rangle$

(S2) Class-to-Sequence: Text Generation (continued)

- \oplus \rightarrow I love my cat.
- \oplus \to Cats and dogs lap water.
- \rightarrow It is raining cats and dogs.
- \rightarrow Cats and dogs are not allowed.
- \rightarrow Cats and dogs have always been natural enemies.

Vocabulary: (allowed always and are been cat cats dogs enemies have i is it lap love my natural not raining water <start> <end>)

Input:
$$[[[\mathbf{x}, \mathbf{y}(0)], \mathbf{y}(1)], \mathbf{y}(2)], \ldots], \mathbf{y}(\tau - 1)], \quad \mathbf{x} = \begin{pmatrix} \oplus \\ \cdot \end{pmatrix}$$

Output: $[\mathbf{y}(1), \mathbf{y}(2), \mathbf{y}(3), \dots, \mathbf{y}(\tau)], \quad \mathbf{y}(0) \equiv \mathbf{c}(0) \stackrel{\frown}{=} \langle \mathbf{start} \rangle, \quad \mathbf{y}(\tau) \stackrel{\frown}{=} \mathbf{c}(5) \stackrel{\frown}{=} \langle \mathbf{end} \rangle$

(S2) Class-to-Sequence: Text Generation (continued)

- \oplus \rightarrow I love my cat.
- \oplus \rightarrow Cats and dogs lap water.
- \ominus \rightarrow It is raining cats and dogs.
- \rightarrow Cats and dogs are not allowed.
- \rightarrow Cats and dogs have always been natural enemies.

Vocabulary: (allowed always and are been cat cats dogs enemies have i is it lap love my natural not raining water <start> <end>)

Input:
$$[\ [\ [\ [\mathbf{x}, \ \mathbf{y}(0)], \ \mathbf{y}(1)], \ \mathbf{y}(2)], \ldots], \ \mathbf{y}(\tau-1)], \quad \mathbf{x} = \begin{pmatrix} \oplus \\ \cdot \end{pmatrix}$$

Output: $[\mathbf{y}(1), \mathbf{y}(2), \mathbf{y}(3), \dots, \mathbf{y}(\tau)], \quad \mathbf{y}(0) \equiv \mathbf{c}(0) = \langle \mathsf{start} \rangle, \quad \mathbf{y}(\tau) = \mathbf{c}(5) = \langle \mathsf{end} \rangle$

Target:
$$[\mathbf{c}(1), \dots, \mathbf{c}(5)] = \begin{bmatrix} \begin{pmatrix} 0 \\ \vdots \\ 1 \\ 0 \\ \vdots \end{pmatrix}, \begin{pmatrix} 0 \\ \vdots \\ 1 \\ 0 \\ \vdots \end{pmatrix}, \begin{pmatrix} 0 \\ \vdots \\ 1 \\ 0 \\ \vdots \end{pmatrix}, \begin{pmatrix} 0 \\ \vdots \\ 1 \\ 0 \\ \vdots \end{pmatrix}, \begin{pmatrix} 0 \\ \vdots \\ 1 \\ 0 \\ \vdots \end{pmatrix} \end{bmatrix}$$

$$\hat{=} [\text{word_11}, \text{word_15}, \text{word_16}, \text{word_22}]$$

$$\hat{=} \text{I love my cat}$$

(S2) Class-to-Sequence Mapping with RNNs

Input:

$$x, [y(1), ..., y(\tau-1)]$$

Output:

$$\mathbf{y}(t) = \boldsymbol{\sigma}_1 \left(W^{\mathsf{o}} \, \mathbf{y}^{\mathsf{h}}(t) \right), t = 1, \dots, \tau$$

Hidden:

$$\mathbf{y}^{\mathsf{h}}(0) = \boldsymbol{\sigma}\left(W^{\mathsf{i}}\,\mathbf{x}\right)$$

$$\mathbf{y}^{\mathsf{h}}(t) = \boldsymbol{\sigma}\left(W^{\mathsf{h}}\begin{pmatrix}\mathbf{y}^{\mathsf{h}}(t-1)\\\mathbf{y}(t-1)\end{pmatrix}\right), t = 1, \dots,$$

$$[\mathbf{c}(1),\ldots,\mathbf{c}(T)]$$

$$\mathbf{c}(T) = \langle \mathsf{end} \rangle$$

(S2) Class-to-Sequence Mapping with RNNs (continued)

Input:

$$x, [y(1), ..., y(\tau-1)]$$

Output:

$$\mathbf{y}(t) = \boldsymbol{\sigma}_1 \left(W^{\mathsf{o}} \, \mathbf{y}^{\mathsf{h}}(t) \right), t = 1, \dots, \tau$$

Hidden:

$$\mathbf{y}^{\mathsf{h}}(0) = \boldsymbol{\sigma}\left(W^{\mathsf{i}}\,\mathbf{x}\right)$$

$$\mathbf{y}^{\mathsf{h}}(t) = \boldsymbol{\sigma} \left(W^{\mathsf{h}} \begin{pmatrix} \mathbf{y}^{\mathsf{h}}(t-1) \\ \mathbf{v}(t-1) \end{pmatrix} \right), t = 1, \dots,$$

$$[\mathbf{c}(1),\ldots,\mathbf{c}(T)]$$

$$\mathbf{c}(T) \mathrel{\widehat{=}} < \mathsf{end} >$$

(S2) Class-to-Sequence Mapping with RNNs (continued)

Input:

$$x, [y(1), \dots, y(\tau-1)]$$

Output:

$$\mathbf{y}(t) = \boldsymbol{\sigma_1} \left(W^{\mathsf{o}} \, \mathbf{y}^{\mathsf{h}}(t) \right), t = 1, \dots, \tau$$

Hidden:

$$\mathbf{y}^{\mathsf{h}}(0) = \boldsymbol{\sigma}\left(W^{\mathsf{i}}\,\mathbf{x}\right)$$

$$\mathbf{y}^{\mathsf{h}}(t) = \boldsymbol{\sigma}\left(W^{\mathsf{h}}\begin{pmatrix}\mathbf{y}^{\mathsf{h}}(t-1)\\\mathbf{v}(t-1)\end{pmatrix}\right), t = 1, \dots,$$

$$[\mathbf{c}(1),\ldots,\mathbf{c}(T)]$$

$$\mathbf{c}(T) = \langle \mathsf{end} \rangle$$

(S2) Class-to-Sequence Mapping with RNNs (continued)

Input:

$$x, [y(1), \dots, y(\tau-1)]$$

Output:

$$\mathbf{y}(t) = \boldsymbol{\sigma_1} \left(W^{\mathsf{o}} \, \mathbf{y}^{\mathsf{h}}(t) \right), t = 1, \dots, \tau$$

Hidden:

$$\mathbf{y}^{\mathsf{h}}(0) = \boldsymbol{\sigma}\left(W^{\mathsf{i}}\,\mathbf{x}\right)$$

$$\mathbf{y}^{\mathsf{h}}(t) = \boldsymbol{\sigma}\left(W^{\mathsf{h}}\begin{pmatrix}\mathbf{y}^{\mathsf{h}}(t-1)\\\mathbf{c}(t-1)\end{pmatrix}\right), t = 1, \dots, T$$

$$[\mathbf{c}(1),\ldots,\mathbf{c}(T)]$$

$$\mathbf{c}(T) = \langle \text{end} \rangle$$

(S2) Class-to-Sequence Mapping with RNNs (continued)

Input:

$$x, [y(1), \dots, y(\tau-1)]$$

Output:

$$\mathbf{y}(t) = \boldsymbol{\sigma_1} \left(W^{\mathsf{o}} \, \mathbf{y}^{\mathsf{h}}(t) \right), t = 1, \dots, \tau$$

Hidden:

$$\mathbf{y}^{\mathsf{h}}(0) = \boldsymbol{\sigma}\left(W^{\mathsf{i}}\,\mathbf{x}\right)$$

$$\mathbf{y}^{\mathsf{h}}(t) = \boldsymbol{\sigma}\left(W^{\mathsf{h}}\begin{pmatrix}\mathbf{y}^{\mathsf{h}}(t-1)\\\mathbf{v}(t-1)\end{pmatrix}\right), t = 1, \dots, \tau$$

$$[\mathbf{c}(1),\ldots,\mathbf{c}(T)]$$

$$\mathbf{c}(T) = \langle \mathsf{end} \rangle$$

(S2) Class-to-Sequence Mapping with RNNs (continued)

Input:

$$x, [y(1), \dots, y(\tau-1)]$$

Output:

$$\mathbf{y}(t) = \boldsymbol{\sigma_1} \left(W^{\mathsf{o}} \, \mathbf{y}^{\mathsf{h}}(t) \right), t = 1, \dots, \tau$$

Hidden:

$$\mathbf{y}^{\mathsf{h}}(0) = \boldsymbol{\sigma}\left(W^{\mathsf{i}}\,\mathbf{x}\right)$$

$$\mathbf{y}^{\mathsf{h}}(t) = \boldsymbol{\sigma}\left(W^{\mathsf{h}}\begin{pmatrix}\mathbf{y}^{\mathsf{h}}(t-1)\\\mathbf{v}(t-1)\end{pmatrix}\right), t = 1, \dots, \tau$$

$$[\mathbf{c}(1),\ldots,\mathbf{c}(T)]$$

$$\mathbf{c}(T) = \langle \mathsf{end} \rangle$$

(S2) Class-to-Sequence Mapping with RNNs (continued)

Input:

Output:

$$\mathbf{y}(t) = \boldsymbol{\sigma_1} \left(\mathbf{W}^{\mathsf{o}} \, \mathbf{y}^{\mathsf{h}}(t) \right), t = 1, \dots, 5$$

Hidden:

$$\mathbf{y}^{\mathsf{h}}(0) = \boldsymbol{\sigma}\left(W^{\mathsf{i}}\,\mathbf{x}\right)$$

$$\mathbf{y}^{\mathsf{h}}(t) = \boldsymbol{\sigma}\left(W^{\mathsf{h}}\begin{pmatrix}\mathbf{y}^{\mathsf{h}}(t-1)\\\mathbf{c}(t-1)\end{pmatrix}\right), t = 1, \dots, 5$$

$$[\mathbf{c}(1),\ldots,\mathbf{c}(5)]$$

$$\mathbf{c}(5) \mathrel{\widehat{=}} < \mathsf{end} >$$

(S2) Class-to-Sequence Mapping with RNNs (continued)

Input:

Output:

$$\mathbf{y}(t) = \boldsymbol{\sigma_1} \left(\mathbf{W^0} \, \mathbf{y^h}(t) \right), t = 1, \dots, 5$$

Hidden:

$$\mathbf{y}^{\mathsf{h}}(0) = \boldsymbol{\sigma}\left(W^{\mathsf{i}}\,\mathbf{x}\right)$$

$$\mathbf{y}^{\mathsf{h}}(t) = \boldsymbol{\sigma}\left(W^{\mathsf{h}}\begin{pmatrix}\mathbf{y}^{\mathsf{h}}(t-1)\\\mathbf{v}(t-1)\end{pmatrix}\right), t = 1, \dots, 5$$

$$[\mathbf{c}(1),\ldots,\mathbf{c}(5)]$$

$$\mathbf{c}(5) \mathrel{\widehat{=}} < \mathsf{end} >$$

(S2) Class-to-Sequence Mapping with RNNs (continued)

Input:

Output:

$$\mathbf{y}(t) = \boldsymbol{\sigma_1} \left(\mathbf{W}^{\mathsf{o}} \, \mathbf{y}^{\mathsf{h}}(t) \right), t = 1, \dots, 4$$

Hidden:

$$\mathbf{y}^{\mathsf{h}}(0) = \boldsymbol{\sigma}\left(W^{\mathsf{i}}\,\mathbf{x}\right)$$

$$\mathbf{y}^{\mathsf{h}}(t) = \boldsymbol{\sigma}\left(W^{\mathsf{h}}\begin{pmatrix}\mathbf{y}^{\mathsf{h}}(t-1)\\\mathbf{y}(t-1)\end{pmatrix}\right), t = 1, \dots, 4$$

$$[\mathbf{c}(1),\ldots,\mathbf{c}(5)]$$

$$\mathbf{c}(5) \mathrel{\widehat{=}} < \mathsf{end} >$$

Remarks:

- We denote $\mathbf{y}(0)$ not as input since it is predefined and does not contain any "actual knowledge". In particular, $\mathbf{y}(0) \equiv \mathbf{c}(0) =$
- $oldsymbol{\Box}$ At training time the calculation of $\mathbf{y}^h(t)$ usually considers the ground truth $\mathbf{c}(t-1)$:

$$\mathbf{y}^{\mathsf{h}}(t) = \boldsymbol{\sigma} \left(W^{\mathsf{h}} \left(\begin{array}{c} \mathbf{y}^{\mathsf{h}}(t-1) \\ \mathbf{c}(t-1) \end{array} \right) \right)$$

 \Box At test time ("production mode") the calculation of $\mathbf{y}^h(t)$ has to consider the output $\mathbf{y}(t-1)$:

$$\mathbf{y}^{\mathsf{h}}(t) = \boldsymbol{\sigma} \left(W^{\mathsf{h}} \left(\begin{array}{c} \mathbf{y}^{\mathsf{h}}(t-1) \\ \mathbf{y}(t-1) \end{array} \right) \right)$$

The IGD Algorithm for Class-to-Sequence Tasks [IGD_seq2c]

Algorithm: Incremental Gradient Descent for RNNs at class2seq tasks. IGD_{c2seq} Input: Multiset of examples $(\mathbf{x}, [\mathbf{c}(1), \dots, \mathbf{c}(T)])$ with $\mathbf{x} \in \{0, 1\}^p$, $\mathbf{c}(t) \in \mathbf{R}^k$. DLearning rate, a small positive constant. η $W^{\mathsf{i}}, W^{\mathsf{h}}, W^{\mathsf{o}}$ Output: Weights matrices. (= hypothesis) initialize random weights (W^{i}, W^{h}, W^{o}) , $t_{training} = 0$ 2. REPEAT 3. $t_{\text{training}} = t_{\text{training}} + 1$ FOREACH $(\mathbf{x}, [\mathbf{c}(1), \dots, \mathbf{c}(T)]) \in D$ DO 4. 5. Model function evaluation. 6. Calculation of residuals at all layers. 7. Calculation of derivatives. 8. Parameter update $\hat{=}$ one gradient step down. 9. ENDDO **UNTIL**($convergence(D, y(\cdot), t_{training}))$ 10. $return(W^{i}, W^{h}, W^{o})$ 11.

ML:IX-114 Deep Learning

UNTIL(convergence($D, \mathbf{y}(\cdot), t_{\mathsf{training}}$))

The IGD Algorithm for Class-to-Sequence Tasks (continued) [IGD_{seq2c}]

```
Algorithm:
                                               Incremental Gradient Descent for RNNs at class2seq tasks.
                    IGD<sub>c2seq</sub>
Input:
                                               Multiset of examples (\mathbf{x}, [\mathbf{c}(1), \dots, \mathbf{c}(T)]) with \mathbf{x} \in \{0, 1\}^p, \mathbf{c}(t) \in \mathbf{R}^k.
                    D
                                               Learning rate, a small positive constant.
                    \eta
                    W^{\mathsf{i}}, W^{\mathsf{h}}, W^{\mathsf{o}}
Output:
                                             Weights matrices. (= hypothesis)
           initialize random weights (W^{i}, W^{h}, W^{o}), t_{training} = 0
    2.
           REPEAT
   3.
               t_{\text{training}} = t_{\text{training}} + 1
            FOREACH (\mathbf{x}, [\mathbf{c}(1), \dots, \mathbf{c}(T)]) \in D DO
   4.
            \mathbf{v}^{\mathsf{h}}(0) = \boldsymbol{\sigma} \left( W^{\mathsf{i}} \mathbf{x} \right)
    5.
                   FOR t=1 TO T DO // forward propagation
                      \mathbf{y}^{\mathsf{h}}(t) = \sigma\left(W^{\mathsf{h}}\begin{pmatrix}\mathbf{y}^{\mathsf{h}}(t-1)\\\mathbf{c}(t-1)\end{pmatrix}\right), \quad \mathbf{y}(t) = \sigma_1\left(W^{\mathsf{o}}\,\mathbf{y}^{\mathsf{h}}(t)\right)
                   ENDDO
                   Calculate \delta^0, \delta^h, \delta^i // backpropagation (Steps 6+7)
    6.
                   Calculate \Delta W^{\rm i}, \Delta W^{\rm h}, \Delta W^{\rm o}
   7.
                   W^{i} = W^{i} + \Delta W^{i}, W^{h} = W^{h} + \Delta W^{h}. W^{o} = W^{o} + \Delta W^{o}
   8.
    9.
               ENDDO
```

ML:IX-115 Deep Learning

 $return(W^{i}, W^{h}, W^{o})$

10.

11.

Chapter ML:IX (continued)

IX. Deep Learning

- □ Elements of Deep Learning
- Convolutional Neural Networks
- Autoencoder Networks
- □ Recurrent Neural Networks
- □ RNNs for Machine Translation
- Attention Mechanism
- □ Self Attention and Transformers
- □ Transformer Language Models

ML:IX-113 Deep Learning © STEIN/VÖLSKE 2022

Statistical Machine Translation (SMT)

ML:IX-114 Deep Learning © STEIN/VÖLSKE 2022

Statistical Machine Translation (SMT) (continued)

ML:IX-115 Deep Learning © STEIN/VÖLSKE 2022

Statistical Machine Translation (SMT) (continued)

"Noisy channel" model applied to SMT:

Learn from a parallel corpus D a probabilistic model, $P(Y \mid X)$, which can be used to decode the channel input (the target sentence y, e.g. in German) from the channel output (the source sentence x in a foreign language (e.g., English)).

ML:IX-116 Deep Learning © STEIN/VÖLSKE 2022

Statistical Machine Translation (SMT) (continued)

```
p(\mbox{``ich liebe meine katze''} \mid \mbox{``i love my cat''}) p(\mbox{German\_sentence} \mid \mbox{English\_sentence}) p(\mbox{sentence\_in\_own\_language} \mid \mbox{sentence\_in\_foreign\_language}) p(y \mid x)
```

ML:IX-117 Deep Learning © STEIN/VÖLSKE 2022

Statistical Machine Translation (SMT) (continued)

$$p(\mbox{``ich liebe meine katze''} \mid \mbox{``i love my cat''})$$

$$p(\mbox{German_sentence} \mid \mbox{English_sentence})$$

$$p(\mbox{sentence_in_own_language} \mid \mbox{sentence_in_foreign_language})$$

$$p(y \mid x)$$

Task: Given a sentence x in a foreign language (here: English), what is the most probable translation y in our own language (here: German)?

$$p(y \mid x) \rightarrow \max$$

Remarks:

- Noisy Channel model (1). When the (German) sentence y was transmitted over a noisy channel, it got corrupted and came out as sentence x in a foreign language (English). The task is to recover the original sentence, i.e., to decode (= translate) the English (source) into German (target).
- Noisy Channel model (2). We can observe only x, and we ask ourselves which sentence y might have induced x. Among the candidates for y we search the most probable sentence, which we then consider as translation of x. I.e., the Noisy Channel model does *not* take sentence y and looks for a translation x (= varies x), but takes x as given and varies among the y.

Tackling this translation task with coupled RNNs (= Neural Machine Translation) reflects this view: Conditioned by the hidden vector encoding of x, denoted as $\mathbf{y}^{\mathbf{e}}(T^{\mathbf{e}})$ in the figure, the decoder has to generate the most probable sentence y.

ML:IX-119 Deep Learning © STEIN/VÖLSKE 2022

Statistical Machine Translation (SMT) (continued)

Based on a parallel corpus D, the best translation y of a sentence x given in the foreign language maximizes under D the probability $p(y \mid x)$:

$$\operatorname{argmax}_y p(y \mid x) = \operatorname{argmax}_y \ p(x \mid y) \cdot p(y) \qquad \Longleftrightarrow \qquad \begin{aligned} &P(Y \mid X) = \frac{P(X \mid Y) \cdot P(Y)}{P(X)} \\ &X \stackrel{?}{=} \mathsf{X} = x, \quad x \stackrel{?}{=} \mathsf{English} \ \mathsf{sentence} \\ &Y \stackrel{?}{=} \mathsf{Y} = y, \quad y \stackrel{?}{=} \mathsf{German} \ \mathsf{sentence} \end{aligned}$$

ML:IX-120 Deep Learning © STEIN/VÖLSKE 2022

Statistical Machine Translation (SMT) (continued)

Based on a parallel corpus D, the best translation y of a sentence x given in the foreign language maximizes under D the probability $p(y \mid x)$:

$$\operatorname{argmax}_y p(y \mid x) = \operatorname{argmax}_y \ p(x \mid y) \cdot \boxed{p(y)} \qquad \Leftarrow \qquad \begin{aligned} &P(Y \mid X) = \frac{P(X \mid Y) \cdot P(Y)}{P(X)} \\ &X \stackrel{?}{=} X = x, \quad x \stackrel{?}{=} \text{ English sentence} \\ &Y \stackrel{?}{=} Y = y, \quad y \stackrel{?}{=} \text{ German sentence} \end{aligned}$$

- 1. p(y) is called "language model" and takes care of the *fluency* in the target language. It is modeled as $p(y_1, \ldots, y_m) = \prod_{i=1}^m p(y_i \mid y_{i-(n-1)}, \ldots, y_{i-1})$. Training data are (monolingual) corpora in the target language.
- 2. $p(x \mid y)$ is called "translation model" and captures the translation *fidelity* between two languages. It is modeled as $p(x, \mathbf{a} \mid y)$, where "a" is a vector of alignment features. Training data are bilingual corpora.
- 3. argmax_y is called "decoder" and operationalizes the *search* for the maximization problem. Keyword: beam search

Statistical Machine Translation (SMT) (continued)

Based on a parallel corpus D, the best translation y of a sentence x given in the foreign language maximizes under D the probability $p(y \mid x)$:

$$\underset{y \, \cong \, Y=y, \quad y \, \cong \, \text{German sentence}}{\operatorname{argmax}_y \, p(y \mid x) = \, \operatorname{argmax}_y \, p(x \mid y) \, \cdot \, p(y)} \, \leftarrow \, \frac{P(Y \mid X) = \frac{P(X \mid Y) \cdot P(Y)}{P(X)}}{X \, \cong \, X = x, \quad x \, \cong \, \text{English sentence}}$$

- 1. p(y) is called "language model" and takes care of the *fluency* in the target language. It is modeled as $p(y_1, \ldots, y_m) = \prod_{i=1}^m p(y_i \mid y_{i-(n-1)}, \ldots, y_{i-1})$. Training data are (monolingual) corpora in the target language.
- 2. $p(x \mid y)$ is called "translation model" and captures the translation *fidelity* between two languages. It is modeled as $p(x, \mathbf{a} \mid y)$, where "a" is a vector of alignment features. Training data are bilingual corpora.
- 3. $argmax_y$ is called "decoder" and operationalizes the *search* for the maximization problem. Keyword: beam search

Statistical Machine Translation (SMT) (continued)

Based on a parallel corpus D, the best translation y of a sentence x given in the foreign language maximizes under D the probability $p(y \mid x)$:

$$\underset{y \, \cong \, Y=y, \quad y \, \cong \, \text{German sentence} }{\operatorname{argmax}_y} \, p(y \mid x) = \underbrace{ \begin{array}{c} P(Y \mid X) = \frac{P(X \mid Y) \cdot P(Y)}{P(X)} \\ X \, \cong \, X=x, \quad x \, \cong \, \text{English sentence} \\ Y \, \cong \, Y=y, \quad y \, \cong \, \text{German sentence} \\ \end{array} }$$

- 1. p(y) is called "language model" and takes care of the *fluency* in the target language. It is modeled as $p(y_1, \ldots, y_m) = \prod_{i=1}^m p(y_i \mid y_{i-(n-1)}, \ldots, y_{i-1})$. Training data are (monolingual) corpora in the target language.
- 2. $p(x \mid y)$ is called "translation model" and captures the translation *fidelity* between two languages. It is modeled as $p(x, \mathbf{a} \mid y)$, where "a" is a vector of alignment features. Training data are bilingual corpora.
- 3. $argmax_y$ is called "decoder" and operationalizes the *search* for the maximization problem. Keyword: beam search

Remarks (statistical machine translation):

- Although $p(y \mid x)$ can be maximized directly, Bayes rule is applied since the decomposition of $p(y \mid x)$ into $p(x \mid y)$ and p(y) comes along with a number of advantages.
- In the language model syntax, $p(y) = p(y_1, y_2, \dots, y_m)$ denotes the probability of the event to observe the sentence $y = y_1 y_2 \dots y_m$, where y_1 corresponds to the first word of the sentence, y_2 to the second, etc. The y_i are realizations of random variables, which can be written in any order as arguments of p(). I.e., to capture the word order, y_i does not only denote the word, but also its position: y_i corresponds to the event "Word y_i at position i." In summary, $p(y_1, y_2, \dots, y_m)$ is a short form of $P(Y_1 = y_1, Y_2 = y_2, \dots, Y_m = y_m)$, where the Y_i
 - are random variables whose realizations are the possible words at position i. Note that these random variables are neither independent nor identically distributed.
- Learning $p(x, \mathbf{a} \mid y)$ from a parallel corpus D is a highly sophisticated endeavor since the alignments features are complex and given as latent variables only.

ML:IX-124 Deep Learning © STEIN/VÖLSKE 2022

Neural Machine Translation (NMT)

Concept:

- Machine translation with a multilayer perceptron (MLP).
- Network architecture is a sequence-to-sequence model:
 - 1. Encoder RNN, calculates an encoding of the source sentence x.
 - 2. Decoder RNN, generates the target sentence *y*. The decoder RNN is a *conditional* language model—it is conditioned on the RNN encoding.
- Optimization (loss minimization) is done for the network as a whole, which means that backpropagation is performed "end-to-end".

ML:IX-125 Deep Learning © STEIN/VÖLSKE 2022

Neural Machine Translation (NMT) (continued)

Concept:

ML:IX-126 Deep Learning © STEIN/VÖLSKE 2022

Neural Machine Translation (NMT) (continued)

Concept:

The sequence-to-sequence RNN directly calculates $p(y \mid x)$:

$$p(y \mid x) = p(y_1 \mid x) \cdot p(y_2 \mid y_1, x) \cdot p(y_3 \mid y_1, y_2, x) \cdot \ldots \cdot p(y_\tau \mid y_1, \ldots, y_{\tau-1}, x)$$

ML:IX-127 Deep Learning © STEIN/VÖLSKE 2022

Remarks:

- "End-to-end" is not an architectural feature of a network (observe that every network is used in this way). It is a strategy for solving a task by *not* decomposing it, but by processing the original input-output examples in an indivisible manner.
- The sequence-to-sequence model is an example of a conditional language model. (1) It is a language model because the decoder is predicting the next word y_t of the target sentence based on the preceding words y_1, \ldots, y_{t-1} . (2) It is conditional because its predictions are also conditioned on the source sentence x. [Manning 2021, lecture CS224N]
- □ In the following slides, the hidden vector $\mathbf{y}^{\mathbf{e}}(T^{\mathbf{e}})$ represents the RNN encoding of the source sentence x. In particular,
 - the words x_t from a source (input) sentence x are denoted as $\mathbf{x}(t)$,
 - the words y_t from a output sentence are denoted as y(t),
 - the words y_t from a target sentence y are denoted as $\mathbf{c}(t)$.

Note that we have not distinguished whether y_t is output or target.

ullet Don't get confused: The input y of the noisy channel becomes the target (output) of the RNN. Similarly, the output x of the noisy channel becomes the source (input) of the RNN.

ML:IX-128 Deep Learning © STEIN/VÖLSKE 2022

Types of Learning Tasks [Recap]

(S1) sequence \rightarrow class

sentence $\rightarrow \{\oplus, \ominus\}$ i love my cat $\rightarrow \oplus$

(S2) $class \rightarrow sequence$

 $\{\oplus,\ominus\}\to sentence$

 $\oplus
ightarrow$ i love my cat

(S3) sequence → sequence

 $English \ sentence \rightarrow German \ sentence$

i love my cat \rightarrow ich liebe meine katze

(S3) Sequence-to-Sequence: Machine Translation

- \supset I love my cat. \rightarrow Ich liebe meine Katze.
- \supset Cats and dogs lap water. o Katzen und Hunde lecken Wasser.
- \Box It is raining cats and dogs. \to Es regnet in Strömen.
- \Box Cats and dogs are not allowed. \rightarrow Katzen oder Hunde sind nicht erlaubt.

```
Vocabulary<sup>e</sup>: (allowed and are cat cats dogs i is it lap love my not raining water)
```

Vocabulary^d: (erlaubt es hunde ich in katze lecken liebe meine nicht regnet sind strömen und wasser <start> <end>)

ML:IX-130 Deep Learning © STEIN/VÖLSKE 2022

(S3) Sequence-to-Sequence: Machine Translation (continued)

I love my cat.

→ Ich liebe meine Katze

Cats and dogs lap water.

→ Katzen und Hunde lecken Wasser.

- It is raining cats and dogs.
- ightarrow Es regnet in Strömen.
- Cats and dogs are not allowed. \rightarrow Katzen oder Hunde sind nicht erlaubt.
- Vocabulary^e: (allowed and are cat cats dogs i is it lap love my not raining water)
- Vocabularyd: (erlaubt es hunde ich in katze lecken liebe meine nicht regnet sind strömen und wasser <start> <end>)
- $\left[\left[\left[\left[\left[\mathbf{x}, \ \mathbf{y}(0) \right], \ \mathbf{y}(1) \right], \ \mathbf{y}(2) \right], \ldots \right], \ \mathbf{y}(\tau 1) \right], \ \mathbf{x} = \left| \begin{pmatrix} \mathbf{0} \\ \vdots \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} \mathbf{0} \\ \vdots \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} \mathbf{0} \\ \vdots \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} \mathbf{0} \\ \vdots \\ 1 \\ 0 \end{pmatrix} \right| \stackrel{\bigcirc}{=} \mathbf{I} \text{ love my cat }$ Input:
- $[\mathbf{y}(1),\mathbf{y}(2),\mathbf{y}(3),\ldots,\mathbf{y}(\tau^{\mathsf{d}})], \quad \mathbf{y}(0) \equiv \mathbf{c}(0) = \langle \mathsf{start} \rangle, \quad \mathbf{y}(\tau) = \mathbf{c}(5) = \langle \mathsf{end} \rangle$ Output:

(S3) Sequence-to-Sequence: Machine Translation (continued)

I love my cat.

→ Ich liebe meine Katze

Cats and dogs lap water.

→ Katzen und Hunde lecken Wasser.

- It is raining cats and dogs.
- ightarrow Es regnet in Strömen.
- Cats and dogs are not allowed. \rightarrow Katzen oder Hunde sind nicht erlaubt.
- Vocabulary^e: (allowed and are cat cats dogs i is it lap love my not raining water)
- Vocabularyd: (erlaubt es hunde ich in katze lecken liebe meine nicht regnet sind strömen und wasser <start> <end>)
- $\left[\left[\left[\left[\mathbf{x}, \ \mathbf{y}(0) \right], \ \mathbf{y}(1) \right], \ \mathbf{y}(2) \right], \ldots \right], \ \mathbf{y}(\tau 1) \right], \ \mathbf{x} = \left| \left(\begin{matrix} 0 \\ \vdots \\ 1 \\ 0 \end{matrix}\right), \left(\begin{matrix} 0 \\ \vdots \\ 1 \\ 0 \end{matrix}\right), \left(\begin{matrix} 0 \\ \vdots \\ 1 \\ 0 \end{matrix}\right), \left(\begin{matrix} 0 \\ \vdots \\ 1 \\ 0 \end{matrix}\right) \right| \stackrel{\bigcirc}{=} \mathbf{I} \text{ love my cat }$ Input:
- $[\mathbf{y}(1),\mathbf{y}(2),\mathbf{y}(3),\ldots,\mathbf{y}(\tau^{\mathsf{d}})], \quad \mathbf{y}(0) \equiv \mathbf{c}(0) \ \widehat{=} \ < \mathsf{start}>, \quad \mathbf{y}(\tau) \ \widehat{=} \ \mathbf{c}(5) \ \widehat{=} \ < \mathsf{end}>$ Output:

(S3) Sequence-to-Sequence: Machine Translation (continued)

I love my cat.

→ Ich liebe meine Katze

Cats and dogs lap water.

→ Katzen und Hunde lecken Wasser.

- It is raining cats and dogs.
- ightarrow Es regnet in Strömen.
- Cats and dogs are not allowed. \rightarrow Katzen oder Hunde sind nicht erlaubt.
- Vocabulary^e: (allowed and are cat cats dogs i is it lap love my not raining water)
- Vocabularyd: (erlaubt es hunde ich in katze lecken liebe meine nicht regnet sind strömen und wasser <start> <end>)
- $\left[\ \left[\ \left[\ \left[\ \mathbf{x}, \ \mathbf{y}(0) \right], \ \mathbf{y}(1) \right], \ \mathbf{y}(2) \right], \ldots \right], \ \mathbf{y}(\tau-1) \right], \ \mathbf{x} = \left| \left(\begin{matrix} 0 \\ \vdots \\ 1 \\ 0 \end{matrix}, \left(\begin{matrix} 0 \\ \vdots \\ 1 \\ 0 \end{matrix}, \left(\begin{matrix} 0 \\ \vdots \\ 1 \\ 0 \end{matrix}, \left(\begin{matrix} 0 \\ \vdots \\ 1 \\ 0 \end{matrix}, \left(\begin{matrix} 0 \\ \vdots \\ 1 \\ 0 \\ \vdots \end{matrix} \right) \right) \right| \stackrel{\frown}{\cong} \mathbf{I} \text{ love my cat } \right|$ Input:
- $[\mathbf{y}(1),\mathbf{y}(2),\mathbf{y}(3),\ldots,\mathbf{y}(\tau^{\mathsf{d}})], \quad \mathbf{y}(0) \equiv \mathbf{c}(0) \stackrel{\frown}{=} \langle \mathsf{start} \rangle, \quad \mathbf{y}(\tau) \stackrel{\frown}{=} \mathbf{c}(5) \stackrel{\frown}{=} \langle \mathsf{end} \rangle$ Output:

(S3) Sequence-to-Sequence: Machine Translation (continued)

I love my cat.

→ Ich liebe meine Katze

Cats and dogs lap water.

→ Katzen und Hunde lecken Wasser.

- It is raining cats and dogs.
- ightarrow Es regnet in Strömen.
- Cats and dogs are not allowed. \rightarrow Katzen oder Hunde sind nicht erlaubt.
- Vocabulary^e: (allowed and are cat cats dogs i is it lap love my not raining water)
- Vocabularyd: (erlaubt es hunde ich in katze lecken liebe meine nicht regnet sind strömen und wasser <start> <end>)
- Input:

 $[\mathbf{y}(1),\mathbf{y}(2),\mathbf{y}(3),\ldots,\mathbf{y}(\tau^{\mathsf{d}})], \quad \mathbf{y}(0) \equiv \mathbf{c}(0) \ \widehat{=} \ < \mathsf{start}>, \quad \mathbf{y}(\tau) \ \widehat{=} \ \mathbf{c}(5) \ \widehat{=} \ < \mathsf{end}>$ Output:

(S3) Sequence-to-Sequence: Machine Translation (continued)

I love my cat.

→ Ich liebe meine Katze

Cats and dogs lap water.

→ Katzen und Hunde lecken Wasser.

- It is raining cats and dogs.
- ightarrow Es regnet in Strömen.
- Cats and dogs are not allowed. \rightarrow Katzen oder Hunde sind nicht erlaubt.
- Vocabulary^e: (allowed and are cat cats dogs i is it lap love my not raining water)
- Vocabularyd: (erlaubt es hunde ich in katze lecken liebe meine nicht regnet sind strömen und wasser <start> <end>)
- Input:

$$\left[\left[\left[\left[\mathbf{x}, \ \mathbf{y}(0) \right], \ \mathbf{y}(1) \right], \ \mathbf{y}(2) \right], \ldots \right], \ \mathbf{y}(\tau - 1) \right], \ \mathbf{x} = \begin{bmatrix} \begin{pmatrix} 0 \\ \vdots \\ 1 \\ 0 \\ \vdots \end{pmatrix}, \begin{pmatrix} 0 \\ \vdots \\ 1 \\ 0 \\ \vdots \end{pmatrix}, \begin{pmatrix} 0 \\ \vdots \\ 1 \\ 0 \\ \vdots \end{pmatrix} \right] \widehat{=} \ \mathsf{I} \ \mathsf{love} \ \mathsf{my} \ \mathsf{cat}$$

Output:
$$[\mathbf{y}(1), \mathbf{y}(2), \mathbf{y}(3), \dots, \mathbf{y}(\tau^{\mathsf{d}})], \quad \mathbf{y}(0) \equiv \mathbf{c}(0) = \langle \mathsf{start} \rangle, \quad \mathbf{y}(\tau) = \mathbf{c}(5) = \langle \mathsf{end} \rangle$$

(S3) Sequence-to-Sequence: Machine Translation (continued)

- \Box I love my cat. \rightarrow Ich liebe meine Katze.
- $lue{}$ Cats and dogs lap water. $lue{}$ Katzen und Hunde lecken Wasser.
- \Box Cats and dogs are not allowed. \to Katzen oder Hunde sind nicht erlaubt.
- **Vocabulary**^e: (allowed and are cat cats dogs i is it lap love my not raining water)
- Vocabulary^d: (erlaubt es hunde ich in katze lecken liebe meine nicht regnet sind strömen und wasser <start> <end>)

Input:
$$\begin{bmatrix} \begin{bmatrix} \begin{bmatrix} \begin{bmatrix} \mathbf{x}, \mathbf{y}(0) \end{bmatrix}, \mathbf{y}(1) \end{bmatrix}, \mathbf{y}(2) \end{bmatrix}, \dots \end{bmatrix}, \mathbf{y}(\tau - 1) \end{bmatrix}, \mathbf{x} = \begin{bmatrix} \begin{pmatrix} 0 \\ \vdots \\ 1 \\ 0 \\ \vdots \end{pmatrix}, \begin{pmatrix} 0 \\ \vdots \\ 1 \\ 0 \\ \vdots \end{pmatrix}, \begin{pmatrix} 0 \\ \vdots \\ 1 \\ 0 \\ \vdots \end{pmatrix} \end{bmatrix} \stackrel{\frown}{=} \mathbf{I} \text{ love my cat }$$

Output:
$$[\mathbf{y}(1), \mathbf{y}(2), \mathbf{y}(3), \dots, \mathbf{y}(\tau^{\mathsf{d}})], \quad \mathbf{y}(0) \equiv \mathbf{c}(0) \stackrel{\frown}{=} \langle \mathsf{start} \rangle, \quad \mathbf{y}(\tau) \stackrel{\frown}{=} \mathbf{c}(5) \stackrel{\frown}{=} \langle \mathsf{end} \rangle$$

Target:
$$[\mathbf{c}(1), \dots, \mathbf{c}(5)] = \begin{bmatrix} \begin{pmatrix} 0 \\ \dot{1} \\ 0 \\ \vdots \end{pmatrix}, \begin{pmatrix} 0 \\ \dot{\vdots} \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ \vdots \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ \vdots \\ 1 \\ 0 \\ \vdots \end{pmatrix} \end{bmatrix} \stackrel{\widehat{}}{=} \text{ Ich liebe meine Katze}$$

(S3) Sequence-to-Sequence Mapping with RNNs

Input:

$$\mathbf{x}, [\mathbf{y}(1), \dots, \mathbf{y}(\tau-1)]$$

Output:

$$\mathbf{y}(t) = \boldsymbol{\sigma_1} \left(W^{\mathsf{o}} \, \mathbf{y}^{\mathsf{d}}(t) \right), t = 1, \dots, \tau$$

Hidden:

$$\mathbf{y}^{\mathbf{e}}(t) = \boldsymbol{\sigma}\left(W^{\mathbf{h}}\begin{pmatrix}\mathbf{y}^{\mathbf{e}}(t-1)\\\mathbf{x}(t)\end{pmatrix}\right), t = 1, \dots, T^{\mathbf{e}}$$

$$\mathbf{y}^{\mathsf{d}}(t) = \boldsymbol{\sigma}\left(W^{\mathsf{h}}\begin{pmatrix}\mathbf{y}^{\mathsf{d}}(t-1)\\\mathbf{v}(t-1)\end{pmatrix}\right), t = 1, \dots,$$

Target:

$$[\mathbf{c}(1),\ldots,\mathbf{c}(T)]$$

$$\operatorname{c}(T) \mathrel{\widehat{=}} \operatorname{\langle end \rangle}$$

(S3) Sequence-to-Sequence Mapping with RNNs (continued)

Input:

$$x, [y(1), \dots, y(\tau-1)]$$

Output:

$$\mathbf{y}(t) = \boldsymbol{\sigma_1} \left(W^{\mathsf{o}} \, \mathbf{y}^{\mathsf{d}}(t) \right), t = 1, \dots, \tau$$

Hidden:

$$\mathbf{y}^{\mathsf{e}}(t) = \boldsymbol{\sigma} \left(W^{\mathsf{h}} \begin{pmatrix} \mathbf{y}^{\mathsf{e}}(t-1) \\ \mathbf{x}(t) \end{pmatrix} \right), t = 1, \dots, T^{\mathsf{e}}$$

$$\mathbf{y}^{\mathsf{d}}(t) = \boldsymbol{\sigma}\left(W^{\mathsf{h}}\begin{pmatrix}\mathbf{y}^{\mathsf{d}}(t-1)\\\mathbf{v}(t-1)\end{pmatrix}\right), t = 1, \dots,$$

Target:

$$[\mathbf{c}(1),\ldots,\mathbf{c}(T)]$$

$$\mathbf{c}(T) = \langle \mathsf{end} \rangle$$

(S3) Sequence-to-Sequence Mapping with RNNs (continued)

Input:

$$x, [y(1), ..., y(\tau-1)]$$

Output:

$$\mathbf{y}(t) = \boldsymbol{\sigma_1}\left(W^{\mathbf{0}}\,\mathbf{y}^{\mathbf{d}}(t)\right), t = 1, \dots, au$$

Hidden:

$$\mathbf{y}^{\mathbf{e}}(t) = \boldsymbol{\sigma}\left(W^{\mathbf{h}}\begin{pmatrix}\mathbf{y}^{\mathbf{e}}(t-1)\\\mathbf{x}(t)\end{pmatrix}\right), t = 1, \dots, T^{\mathbf{e}}$$

$$\mathbf{y}^{\mathsf{d}}(t) = \boldsymbol{\sigma}\left(W^{\mathsf{h}}ig(rac{\mathbf{y}^{\mathsf{d}}(t-1)}{\mathbf{v}(t-1)}ig)\right), t = 1, \ldots,$$

Target:

$$[\mathbf{c}(1),\ldots,\mathbf{c}(T)]$$

$$\mathbf{c}(T) \mathrel{\widehat{=}} \mathsf{<\!end\!>}$$

ML:IX-139 Deep Learning

(S3) Sequence-to-Sequence Mapping with RNNs (continued)

Input:

$$\mathbf{x}, [\mathbf{y}(1), \dots, \mathbf{y}(\tau{-}1)]$$

Output:

$$\mathbf{y}(t) = \boldsymbol{\sigma_1} \left(W^{\mathsf{o}} \, \mathbf{y}^{\mathsf{d}}(t) \right), t = 1, \dots, \tau$$

Hidden:

$$\mathbf{y}^{\mathsf{e}}(t) = \boldsymbol{\sigma}\left(W^{\mathsf{h}}\begin{pmatrix}\mathbf{y}^{\mathsf{e}}(t-1)\\\mathbf{x}(t)\end{pmatrix}\right), t = 1, \dots, T^{\mathsf{e}}$$

$$\mathbf{y}^{\mathsf{d}}(t) = \boldsymbol{\sigma}\left(W^{\mathsf{h}}\begin{pmatrix}\mathbf{y}^{\mathsf{d}}(t-1)\\\mathbf{c}(t-1)\end{pmatrix}\right), t = 1, \dots, T^{\mathsf{d}}$$

Target:

$$\mathbf{c}(1), \dots, \mathbf{c}(T)$$

$$\mathbf{c}(T) \stackrel{\frown}{=} \langle \mathsf{end} \rangle$$

ML:IX-140 Deep Learning

© STEIN/VÖLSKE 2022

(S3) Sequence-to-Sequence Mapping with RNNs (continued)

Input:

$$x, [y(1), \dots, y(\tau-1)]$$

Output:

$$\mathbf{y}(t) = \boldsymbol{\sigma_1} \left(W^{\mathsf{o}} \, \mathbf{y}^{\mathsf{d}}(t) \right), t = 1, \dots, \tau$$

Hidden:

$$\mathbf{y}^{\mathsf{e}}(t) = \boldsymbol{\sigma}\left(W^{\mathsf{h}}\begin{pmatrix}\mathbf{y}^{\mathsf{e}}(t-1)\\\mathbf{x}(t)\end{pmatrix}\right), t = 1, \dots, T^{\mathsf{e}}$$

$$\mathbf{y}^{\mathsf{d}}(t) = \boldsymbol{\sigma}\left(W^{\mathsf{h}}\begin{pmatrix}\mathbf{y}^{\mathsf{d}}(t-1)\\\mathbf{v}(t-1)\end{pmatrix}\right), t = 1, \dots, \tau$$

Target:

$$[\mathbf{c}(1),\ldots,\mathbf{c}(T)]$$

$$\mathbf{c}(T) = \langle \text{end} \rangle$$

ML:IX-141 Deep Learning

(S3) Sequence-to-Sequence Mapping with RNNs (continued)

Input:

$$\mathbf{x}, [\mathbf{y}(1), \dots, \mathbf{y}(\tau-1)]$$

Output:

$$\mathbf{y}(t) = \boldsymbol{\sigma}_1 \left(W^{\mathsf{o}} \mathbf{y}^{\mathsf{d}}(t) \right), t = 1, \dots, \tau$$

Hidden:

$$\mathbf{y}^{\mathbf{e}}(t) = \boldsymbol{\sigma} \left(W^{\mathbf{h}} \begin{pmatrix} \mathbf{y}^{\mathbf{e}}(t-1) \\ \mathbf{x}(t) \end{pmatrix} \right), t = 1, \dots, T^{\mathbf{e}}$$

$$\mathbf{y}^{\mathsf{d}}(t) = \boldsymbol{\sigma}\left(W^{\mathsf{h}}\begin{pmatrix}\mathbf{y}^{\mathsf{d}}(t-1)\\\mathbf{v}(t-1)\end{pmatrix}\right), t = 1, \dots, \tau$$

Target:

$$[\mathbf{c}(1),\ldots,\mathbf{c}(T)]$$

$$\mathbf{c}(T) \mathrel{\widehat{=}} < \mathsf{end} >$$

ML:IX-142 Deep Learning

(S3) Sequence-to-Sequence Mapping with RNNs (continued)

Input:

$$\mathbf{x}$$
, $[\mathbf{y}(1), \dots, \mathbf{y}(4)]$

Output:

$$\mathbf{y}(t) = \boldsymbol{\sigma_1} \left(\mathbf{W^o} \, \mathbf{y^d}(t) \right), t = 1, \dots, 5$$

Hidden:

$$\mathbf{y}^{\mathbf{e}}(t) = \boldsymbol{\sigma}\left(W^{\mathsf{h}}\begin{pmatrix}\mathbf{y}^{\mathsf{e}}(t-1)\\\mathbf{x}(t)\end{pmatrix}\right), t = 1, \dots, 4$$

$$\mathbf{y}^{\mathsf{d}}(t) = \boldsymbol{\sigma}\left(W^{\mathsf{h}}\begin{pmatrix}\mathbf{y}^{\mathsf{d}}(t-1)\\\mathbf{c}(t-1)\end{pmatrix}\right), t = 1, \dots, 5$$

Target:

$$[\mathbf{c}(1),\ldots,\mathbf{c}(5)]$$

$$\mathbf{c}(5) \mathrel{\widehat{=}} < \mathsf{end} >$$

ML:IX-143 Deep Learning

(S3) Sequence-to-Sequence Mapping with RNNs (continued)

Input:

$$\mathbf{x}$$
, $[\mathbf{y}(1), \dots, \mathbf{y}(4)]$

Output:

$$\mathbf{y}(t) = \boldsymbol{\sigma_1} \left(\mathbf{W^o} \, \mathbf{y^d}(t) \right), t = 1, \dots, 5$$

Hidden:

$$\mathbf{y}^{\mathbf{e}}(t) = \boldsymbol{\sigma}\left(W^{\mathsf{h}}\begin{pmatrix}\mathbf{y}^{\mathsf{e}}(t-1)\\\mathbf{x}(t)\end{pmatrix}\right), t = 1, \dots, 4$$

$$\mathbf{y}^{\mathsf{d}}(t) = \boldsymbol{\sigma}\left(W^{\mathsf{h}}\begin{pmatrix}\mathbf{y}^{\mathsf{d}}(t-1)\\\mathbf{v}(t-1)\end{pmatrix}\right), t = 1, \dots, 5$$

Target:

$$[\mathbf{c}(1),\ldots,\mathbf{c}(5)]$$

$$\mathbf{c}(5) \mathrel{\widehat{=}} \mathsf{}$$

ML:IX-144 Deep Learning

Remarks:

- The final encoder hidden state, $\mathbf{y}^{\mathsf{e}}(T^{\mathsf{e}})$, represents the encoding of the source sentence. $\mathbf{y}^{\mathsf{e}}(T^{\mathsf{e}})$ is unified with the first decoder hidden state, $\mathbf{y}^{\mathsf{d}}(0)$.
- The encoder hidden state $\mathbf{y}^{\mathbf{e}}(t)$ represents the input sequence *up* to time step t, $[\mathbf{x}(1), \dots, \mathbf{x}(t)]$.
- The decoder hidden state $\mathbf{y}^{\mathsf{d}}(t)$ represents the entire input sequence $[\mathbf{x}(1), \dots, \mathbf{x}(T^{\mathsf{e}})]$, as well as the output sequence up to time step t-1, $[\mathbf{y}(1), \dots, \mathbf{y}(t-1)]$.
- Note that, as before, we are given a model function y(), which maps some input (actually, a *sequence* of feature vectors, $[\mathbf{x}(1), \dots, \mathbf{x}(T^e)]$) to some output (a sequence of output vectors, $[\mathbf{y}(1), \dots, \mathbf{y}(T^d)]$).

ML:IX-145 Deep Learning © STEIN/VÖLSKE 2022

Sequence-to-Sequence RNNs are Conditional Language Models

ML:IX-146 Deep Learning © STEIN/VÖLSKE 2022

Sequence-to-Sequence RNNs are Conditional Language Models (continued)

The sequence-to-sequence RNN directly calculates $p(y \mid x)$:

$$p(y \mid x) = p(y_1 \mid x) \cdot p(y_2 \mid y_1, x) \cdot p(y_3 \mid y_1, y_2, x) \cdot p(y_4 \mid y_1, y_2, y_3, x)$$

ML:IX-147 Deep Learning © STEIN/VÖLSKE 2022

Sequence-to-Sequence RNNs are Conditional Language Models (continued)

The sequence-to-sequence RNN directly calculates $p(y \mid x)$:

$$p(y \mid x) \equiv p(\mathbf{y}(1), \dots, \mathbf{y}(5) \mid \mathbf{x}, \mathbf{y}(0)), \qquad \mathbf{x} := \mathbf{x}(1), \mathbf{x}(2), \mathbf{x}(3), \mathbf{x}(4)$$
$$= p(\mathbf{y}(1) \mid \mathbf{x}, \mathbf{y}(0)) \cdot p(\mathbf{y}(2) \mid \mathbf{x}, \mathbf{y}(0), \mathbf{y}(1)) \cdot \dots \cdot p(\mathbf{y}(5) \mid \mathbf{x}, \mathbf{y}(0), \dots, \mathbf{y}(4))$$

ML:IX-148 Deep Learning © STEIN/VÖLSKE 2022

Sequence-to-Sequence RNNs are Conditional Language Models (continued)

The sequence-to-sequence RNN directly calculates $p(y \mid x)$:

$$p(y \mid x) \equiv p(\mathbf{y}(1), \dots, \mathbf{y}(5) \mid \mathbf{x}, \mathbf{y}(0)), \qquad \mathbf{x} := \mathbf{x}(1), \mathbf{x}(2), \mathbf{x}(3), \mathbf{x}(4)$$
$$= p(\mathbf{y}(1) \mid \mathbf{x}, \mathbf{y}(0)) \cdot p(\mathbf{y}(2) \mid \mathbf{x}, \mathbf{y}(0), \mathbf{y}(1)) \cdot \dots \cdot p(\mathbf{y}(5) \mid \mathbf{x}, \mathbf{y}(0), \dots, \mathbf{y}(4))$$

ML:IX-149 Deep Learning © STEIN/VÖLSKE 2022

Sequence-to-Sequence RNNs are Conditional Language Models (continued)

The sequence-to-sequence RNN directly calculates $p(y \mid x)$:

$$p(y \mid x) \equiv p(\mathbf{y}(1), \dots, \mathbf{y}(5) \mid \mathbf{x}, \mathbf{y}(0)), \qquad \mathbf{x} := \mathbf{x}(1), \mathbf{x}(2), \mathbf{x}(3), \mathbf{x}(4)$$
$$= p(\mathbf{y}(1) \mid \mathbf{x}, \mathbf{y}(0)) \cdot p(\mathbf{y}(2) \mid \mathbf{x}, \mathbf{y}(0), \mathbf{y}(1)) \cdot \dots \cdot p(\mathbf{y}(5) \mid \mathbf{x}, \mathbf{y}(0), \dots, \mathbf{y}(4))$$

ML:IX-150 Deep Learning © STEIN/VÖLSKE 2022

Sequence-to-Sequence RNNs are Conditional Language Models (continued)

The sequence-to-sequence RNN directly calculates $p(y \mid x)$:

$$p(y \mid x) \equiv p(\mathbf{y}(1), \dots, \mathbf{y}(5) \mid \mathbf{x}, \mathbf{y}(0)), \qquad \mathbf{x} := \mathbf{x}(1), \mathbf{x}(2), \mathbf{x}(3), \mathbf{x}(4)$$
$$= p(\mathbf{y}(1) \mid \mathbf{x}, \mathbf{y}(0)) \cdot p(\mathbf{y}(2) \mid \mathbf{x}, \mathbf{y}(0), \mathbf{y}(1)) \cdot \dots \cdot p(\mathbf{y}(5) \mid \mathbf{x}, \mathbf{y}(0), \dots, \mathbf{y}(4))$$

ML:IX-151 Deep Learning © STEIN/VÖLSKE 2022

Remarks:

- Each output vector $\mathbf{y}(t)$ corresponds to a probability distribution over <u>Vocabulary</u>^d (recall the σ_1 -function). Here, the illustration of generation (aka decoding) steps shows an argmax-operation on each $\mathbf{y}(t)$, called "greedy decoding": the word with the highest probability is chosen.
- To maximize $\prod_{t=1}^{\tau} p(\mathbf{y}(t) \mid \mathbf{x}, \mathbf{y}(0), \dots, \mathbf{y}(t-1))$, a complete search in the space of all sequences (target sentences) that can be generated is necessary, which is computationally intractable. Instead, heuristic search such as beam search is applied, where a beam size around 5 to 10 has shown good results in practice.
 - The beam size is the number of generated successors in each decoding step; they are added to the OPEN list of the heuristic search algorithm. [Course on Search Algorithms]
- □ Sequence-to-sequence RNNs can be "stacked", this way forming a multilayer RNN, which is able to compute more complex representations. The idea is that the lower (higher) RNNs should compute lower-level (higher-level) features.
 - Practice has shown that 2-4 layers are useful for neural machine translation, while transformer-based networks are typically deeper and comprise 12-24 layers.

 [Manning 2021, lecture CS224N]

ML:IX-152 Deep Learning © STEIN/VÖLSKE 2022