Chapter ML:IX (continued)
|X. Deep Learning

a

I N N I N

Elements of Deep Learning
Convolutional Neural Networks
Autoencoder Networks

Recurrent Neural Networks
RNNs for Machine Translation
Attention Mechanism

Self Attention and Transformers

Transformer Language Models

ML:IX-29 Deep Learning

© STEIN/VOLSKE 2022

Recurrent Neural Networks

Notation |
S, Q.)
-~
-~
-~ -~ ~©

Recurrent Neural Networks
Notation | (continued)

Recurrent Neural Networks

Notation | (continued)

x(t) input yh(t) hidden (vector, matrix) predefined ya(t) attention

in word | ye(t) hidden encoder hidden .
ML:#X-33 Deep Learning B - R © STEIN/VOLSKE 2022

Recurrent Neural Networks

Notation | (continued)

c(1)

i ove my cat <start> ich liebe meine katze <end>

ich liebe meine katze <ends>

x(t) input yh(t) hidden (vector, matrix) predefined ya(t) attention

in word | ye(t) hidden encoder hidden .
ML:tX-35 Deep Learning I R R © STEIN/VOLSKE 2022

Recurrent Neural Networks

Notation | (continued)

y(1) y&(T9) we y()
c(1) c(T9)
ich liebe meine katze <ends>
ich liebe meine katze <ends>

X(t) input yh(t) hidden (vector, matrix) predefined ya(t) attention
yé(t) hidden encoder hidden

Nl

ML:t%-37 Deep Learning © STEIN/VOLSKE 2022

Remarks:

O A hidden vector is the result of an intermediate computation in a multilayer network. If
sequences are processed, hidden vectors may be distinguished as hidden encoder vectors
(which consider the input at a certain time step) and hidden decoder vectors (which generate
the output at a certain time step).

a A predefined hidden vector is used to for initialization purposes for the first hidden layer in a
sequence-processing multilayer network. Typically, it is a constant vector of zeroes.

O Attention vectors combine the information in hidden vectors in a way that is specific to a
certain time step. Keyword: vanishing gradient problem

Q A target vector (or target vector sequence) encodes the desired output.
Keywords: supervised learning, ground truth

Recurrent Neural Networks
Types of Learning Tasks [Recap]

(s1) sequence — class sentence — {EB, @}
i love my cat — @

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-deep-learning-introduction.pdf#learning-task-types

Recurrent Neural Networks
RNN Sequence Encoding

X1

o One p-dimensional input vector x.
o One hidden layer (general: d—1 hidden layers, i.e., d active layers).
o One k-dimensional output vector y(x).

ML:IX-40 Deep Learning © STEIN/VOLSKE 2022

Recurrent Neural Networks
RNN Sequence Encoding (continued)

x1(1)

L Xp(1)
x(1) ‘
o Sequence of p-dimensional input vectors [x(1),...,x(T)].
o One hidden layer that is recurrently updated.
a One k-dimensional output vector y([x(1),...,x(T)]) ory.

ML:IX-41 Deep Learning © STEIN/VOLSKE 2022

Recurrent Neural Networks
RNN Sequence Encoding (continued)

Unfold hidden layer

yh(1) wh yh(2) yn(T-1) wh o yh(T)

Recurrent Neural Networks
RNN Sequence Encoding (continued)

Unfold hidden layer

yh(0) wh yh(1) wh yh(2) yn(T-1) wh yh(T)
A0 —~ (= o ~erpe =0 -

Vi) — (=
X1(1) — @

x(1) _.@/ .

x(1) x(2)

¢\< ;
© ®

Remarks:

Q Aninput sequence is written in brackets, [x(1),...,x(7T)], where x(t),t = 1,...,T, denotes
the input vector at time step ¢.

Q The words in the input sequence are usually one-hot-encoded, i.e., by a p-dimensional input
vector with a “1” whose position indicates the word, and zeros elsewhere.

Recurrent Neural Networks
RNN Sequence Encoding (continued)

Input encoding over t.

Recurrent Neural Networks
RNN Sequence Encoding (continued)

Input encoding over t.

Recurrent Neural Networks
RNN Sequence Encoding (continued)

Input encoding over t.

Recurrent Neural Networks
RNN Sequence Encoding (continued)

Input encoding over t.

Recurrent Neural Networks
RNN Sequence Encoding (continued)

Input encoding over t.

Recurrent Neural Networks
RNN Sequence Encoding (continued)

Input encoding over t.

Recurrent Neural Networks
RNN Sequence Encoding (continued)

tt1 -2
yh(2) wh
- =
— —;,

x(3)

Input encoding over t.

Recurrent Neural Networks
RNN Sequence Encoding (continued) [encoding overview]

wh yh(1) wh yh(2)

Input encoding over t. The hidden layer at subsequent time steps.

Recurrent Neural Networks

RNN Sequence Encoding (continued) [encoding overview]

Input encoding over t. The hidden layer at subsequent time steps.

Recurrent Neural Networks
RNN Sequence Encoding (continued) [encoding overview]

x(1)

Input encoding over t. The hidden layer at subsequent time steps.

Recurrent Neural Networks
RNN Sequence Encoding (continued) [encoding overview]

x(1)

Input encoding over t. The hidden layer at subsequent time steps.

Recurrent Neural Networks
RNN Sequence Encoding (continued) [encoding overview]

() e S R

xpm»@/ ~®

x(1) x(2)

Input encoding over t. The hidden layer at subsequent time steps.

Recurrent Neural Networks
RNN Sequence Encoding (continued) [encoding overview]

() e S R

xpm»@/ ~®

x(1) x(2)

Input encoding over t. The hidden layer at subsequent time steps.

Recurrent Neural Networks
RNN Sequence Encoding (continued) [encoding overview]

Input encoding over t.

) e L

xpm»@/ ~®

x(1) x(2)

The hidden layer at subsequent time steps.

Recurrent Neural Networks
RNN Sequence Encoding (continued) [encoding overview]

tt1 -2
yh(2) wh
-G =
— —;,

Input encoding over t.

P y “
K
X @

x(1) x(2) x(3)

The hidden layer at subsequent time steps.

Recurrent Neural Networks
(S1) Sequence-to-Class: Sentiment Classification

| love my cat.
Cats and dogs lap water.
It is raining cats and dogs.

Cats and dogs are not allowed.

0 0O 0O O O
A
O O O & @

Cats and dogs have always been natural enemies.

Vocabulary: (allowed always and are been cat cats dogs enemies have i is
it lap love my natural not raining water)

Recurrent Neural Networks
(S1) Sequence-to-Class: Sentiment Classification (continued)

O |love my cat. — @

Vocabulary: (allowed always and are been cat cats dogs enemies have i is
it lap love my natural not raining water)

0y [0y [0y (0
Input: x(1),....x(4)] = 3 SHAHAL

[word_11, word_15, word_16, word_6]

| love my cat

Recurrent Neural Networks
(S1) Sequence-to-Class: Sentiment Classification (continued)

O |love my cat. — @

Vocabulary: (allowed always and are been cat cats dogs enemies have i is
it lap love my natural not raining water)

0y [0y [0y (0
Input: x(1),....x(4)] = 3 SHAHAL

[word_11, word_15, word_16, word_6]

| love my cat

Output: Y([X(l), o aX(4)]) = (Z;)

Target: c= <@>

Recurrent Neural Networks
(S1) Sequence-to-Class Mapping with RNNs

yh(0) wh yh(1) wh yh(2) yh(T-1) wh yh(T)

N N | . \
~O= A= AR =0 = AEET)N 6
— . . . j E

Input: Hidden: Target:

Recurrent Neural Networks
(S1) Sequence-to-Class Mapping with RNNSs (continued)

v“(O)

Vi G

Input: Hidden: Target:
[x(1), ..., x(T)]

Output:

Recurrent Neural Networks
(S1) Sequence-to-Class Mapping with RNNSs (continued)

yh(1) wh
®\i\o N):/r — y1 C1

yh(0)

Input: Hidden: Target:

Output:
y = o (WeyN(T))

Recurrent Neural Networks
(S1) Sequence-to-Class Mapping with RNNSs (continued)

yh(0) wh yh(1) wh yh() yn(T-1) Wh yh(T)

€1 TR R
®\r @}—\QF =)o

§>_ \\\Efﬂ}’k Ck
we y ¢

Input: Hidden: Target:

Recurrent Neural Networks
(S1) Sequence-to-Class Mapping with RNNSs (continued)

yh(1) wh
®\i\o N):/r ﬁy1 C1

yh(0)

Input: Hidden: Target:

Recurrent Neural Networks
(S1) Sequence-to-Class Mapping with RNNSs (continued)

yh(0) wh h wh yh(3) wh

Input: Hidden: Target:
x(1), ..., x(4)] hp) — o (Y DY) s c
[x(1) yh(¢) (W(o))) t=1,....4

Output:

y = a1 (WOy"(4))

Remarks:

“actual knowledge”, but is usually initialized as vector of zeros.

O To keep the illustrations clear we use the bag-of-words model for representing (= embedding)
the words as vectors x(t).

In practice, however, one considers semantically stronger (language-model-based)
embeddings, which also encode information about neighborhoods and occurrence
probabilities. In this regard, either a previously computed embedding can be used, or the
embedding can be learned along with the task, end-to-end.

0 Recap. o1() denotes the softmax function. o7 : R* — A*!, generalizes the logistic (sigmoid)
function to £ dimensions (to & exclusive classes), where o4(z)|; = €%/ Z?zl e*. [Wikipedia]

AF~1 ¢ R¥ denotes the standard k—1-simplex, which contains all k-tuples with non-negative
elements that sum to 1. [Wikipedia]

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-mlp-extenssions.pdf#softmax-function
https://en.wikipedia.org/wiki/Softmax_function
https://en.wikipedia.org/wiki/Simplex#The_standard_simplex

Recurrent Neural Networks
The IGD Algorithm for Sequence-to-Class Tasks [IGDeeq]

Algorithm: I1GDseqoc Incremental Gradient Descent for RNNs at seg2class tasks.
Input: D Multiset of examples ([x(1),...,x(T)],c) with x(t) € R?, c € {0,1}*.
n Learning rate, a small positive constant.

Output: y"(0), Wh, W° Weights of predefined hidden vector and matrices.

1. Initialize_random_weights(y"(0), W", W°), tiaining = 0
2. REPEAT
3. ttraining = ttraining +1
4. FOREACH ([x(1),...,x(T)],c) € D DO
5.
Model function evaluation.
6. Calculation of residuals at all layers.
7. Calculation of derivatives.
8. Parameter update = one gradient step down.
9. ENDDO
10. UNTIL(convergence(D,y(), tiaining))
11. return(y"(0), Wh we)

machine-learning/unit-en-multilayer-perceptron.pdf#algorithm-mlp-training-bp

Recurrent Neural Networks
The IGD Algorithm for Sequence-to-Class Tasks (continued) [IGDepseq]

Algorithm: I1GDseqoc Incremental Gradient Descent for RNNs at seg2class tasks.
Input: D Multiset of examples ([x(1),...,x(T)], c) with x(t) € R?, ¢ € {0,1}".
n Learning rate, a small positive constant.

Output: y"(0), Wh, W° Weights of predefined hidden vector and matrices.

1. Initialize_random_weights(y"(0), W", W°), tiaining = 0

2. REPEAT

3. ttraining = ttraining +1

4. FOREACH ([x(1),...,x(T)],c) € D DO

5. FOR TO DO

Wh
ENDDO
WO

6. Calculate 6°, o

7.

8.

9. ENDDO
10. UNTIL(convergence(D,y(), tiaining))
11. return(y™(0), Wh wo)

machine-learning/unit-en-multilayer-perceptron.pdf#algorithm-mlp-training-bp

Recurrent Neural Networks
Types of Learning Tasks [Recap]

(s2) class — sequence {@, @} — sentence
@ — 1 love my cat

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-deep-learning-introduction.pdf#learning-task-types

Recurrent Neural Networks
RNN Sequence Decoding

o One p-dimensional input vector x.
o One hidden layer (general: d—1 hidden layers, i.e., d active layers).
o One k-dimensional output vector y(x).

ML:IX-73 Deep Learning © STEIN/VOLSKE 2022

Recurrent Neural Networks
RNN Sequence Decoding (continued)

X i) ... nk)
*p yl) .. yla)
X b we 5 y(1) ... y@)

o One p-dimensional input vector x.
o One hidden and one output layer, which are recurrently updated.
o Sequence of k-dimen. output vectors [y(x,1),...,y(x,7)] or [y(1),...,y(7)].

ML:IX-74 Deep Learning © STEIN/VOLSKE 2022

Recurrent Neural Networks
RNN Sequence Decoding (continued)

X - . . y1(1) yi(t)
Xp - s x yr(1) Yi(T)
Unfold hidden and output layer x y(1) - Y(T)
YO Wy wh)
X~ é}.\@

AN
. .
. !

N

& @
X

We y(1)

ML:IX-75 Deep Learning ©STEIN/VOLSKE 2022

Recurrent Neural Networks
RNN Sequence Decoding (continued)

Xq . . y1(1) y1(7)
K : : y(1) yi()
Unfold hidden and output layer x y() ... y(@)

We y(1)

ML:IX-76 Deep Learning ©STEIN/VOLSKE 2022

Remarks:

a

An output sequence is written in brackets, [y(1),...,y(7)], where y(¢),t =1, ..., 7, denotes
the output vector at time step ¢.

The words in the output sequence are usually one-hot-encoded, i.e., by a k-dimensional
output vector with a “1” whose position indicates the word, and zeros elsewhere.

If the input, x, is clear from the context, we usually note y(x,t) as y(t).

The matrix W' is necessary to embed the typically low-dimensional input vector x regarding
the high-dimensional hidden vectors y": y"(0) = o (W'x).

The parameter 7 in y(7) is unknown. More specifically, the generation process terminates at
that time step 7 for which y(7) = (0,0,...,0,1)T (= <end>).

7 does not have to be equal to T'.

Recurrent Neural Networks
RNN Sequence Decoding (continued)

t=0

Output decoding over t.

Recurrent Neural Networks
RNN Sequence Decoding (continued)

Output decoding over t.

Recurrent Neural Networks
RNN Sequence Decoding (continued)

Output decoding over t.

Recurrent Neural Networks
RNN Sequence Decoding (continued)

Output decoding over t.

Recurrent Neural Networks
RNN Sequence Decoding (continued)

Output decoding over t.

Recurrent Neural Networks
RNN Sequence Decoding (continued)

Output decoding over t.

Recurrent Neural Networks
RNN Sequence Decoding (continued)

Output decoding over t.

Recurrent Neural Networks
RNN Sequence Decoding (continued)

Output decoding over t.

Recurrent Neural Networks
RNN Sequence Decoding (continued)

Output decoding over t.

Recurrent Neural Networks
RNN Sequence Decoding (continued) [decoding overview]

t=0

yh(0) wh yh(1) wh yh(2)
’
|
|

Output decoding over t. Hidden and output layer at subsequent time steps.

Recurrent Neural Networks
RNN Sequence Decoding (continued) [decoding overview]

yh(0) wh yh(1) wh yh(2)

Output decoding over t. Hidden and output layer at subsequent time steps.

Recurrent Neural Networks
RNN Sequence Decoding (continued) [decoding overview]

yh(0) wh yh(1) wh yh(2)

Output decoding over t. Hidden and output layer at subsequent time steps.

Recurrent Neural Networks
RNN Sequence Decoding (continued) [decoding overview]

yh(0) wh yh(1) wh yh(2)

Output decoding over t. Hidden and output layer at subsequent time steps.

Recurrent Neural Networks
RNN Sequence Decoding (continued) [decoding overview]

Output decoding over t. Hidden and output layer at subsequent time steps.

Recurrent Neural Networks
RNN Sequence Decoding (continued) [decoding overview]

yh(0) wh yh(1) wh yh(2)

Output decoding over t. Hidden and output layer at subsequent time steps.

Recurrent Neural Networks
RNN Sequence Decoding (continued) [decoding overview]

yh(0) wh yh(1) wh yh(2)

Output decoding over t. Hidden and output layer at subsequent time steps.

Recurrent Neural Networks
RNN Sequence Decoding (continued) [decoding overview]

Output decoding over t. Hidden and output layer at subsequent time steps.

Recurrent Neural Networks
RNN Sequence Decoding (continued) [decoding overview]

Output decoding over t. Hidden and output layer at subsequent time steps.

Recurrent Neural Networks
RNN Sequence Decoding (continued) [decoding overview]

Output decoding over t. Hidden and output layer at subsequent time steps.

Recurrent Neural Networks
(S2) Class-to-Sequence: Text Generation

— | love my cat.
— Cats and dogs lap water.
— Itis raining cats and dogs.

— Cats and dogs are not allowed.

O O O & &

— Cats and dogs have always been natural enemies.

Vocabulary: (allowed always and are been cat cats dogs enemies have i is
it lap love my natural not raining water <start> <end>)

Recurrent Neural Networks
(S2) Class-to-Sequence: Text Generation (continued)

&) — | love my cat.

Vocabulary: (allowed always and are been cat cats dogs enemies have i is
it lap love my natural not raining water <start> <end>)

Input: LB yO1, vy y@)...], yr—1)], x = (@)

= c(0) = <start>, y(r) =c(b) = <end>

<

—
-

N~—r
I

Output: y(1),y(2),y(3),...,¥(7)],

Recurrent Neural Networks
(S2) Class-to-Sequence: Text Generation (continued)

&) — | love my cat.

— Cats and dogs lap water.

‘\U

S — It is raining cats and dogs.
S — Cats and dogs are not allowed.

— Cats and dogs have always been natural enemies.

Vocabulary: (allowed always and are been cat cats dogs enemies have i is
it lap love my natural not raining water <start> <end>)

Input: 1 EESO Y1), y@),. ., yr—1)], xz(@)

Output: ¥, y(2),y(3),...,y(1)], ¥(0)=¢c(0) = <start>, y(7)=c(5)=<end>

ML:IX-99 Deep Learning © STEIN/VOLSKE 2022

Recurrent Neural Networks
(S2) Class-to-Sequence: Text Generation (continued)

&) — | love my cat.

— Cats and dogs lap water.

‘\U

S — It is raining cats and dogs.
S — Cats and dogs are not allowed.

— Cats and dogs have always been natural enemies.

Vocabulary: (allowed always and are been cat cats dogs enemies have i is
it lap love my natural not raining water <start> <end>)

Input: 1 ESORYD. y),.. 0, yir-1)), xz(@)

Output: ¥, y(2),y(3),...,y(7)], ¥(0)=¢c(0) = <start>, y(7)=c(5)=<end>

ML:IX-100 Deep Learning © STEIN/VOLSKE 2022

Recurrent Neural Networks
(S2) Class-to-Sequence: Text Generation (continued)

&) — | love my cat.

— Cats and dogs lap water.

‘\U

S — It is raining cats and dogs.
S — Cats and dogs are not allowed.

— Cats and dogs have always been natural enemies.

Vocabulary: (allowed always and are been cat cats dogs enemies have i is
it lap love my natural not raining water <start> <end>)

Input: B @, y@).. ., yir-1)], xz(@)

Output: ¥, y(2),y3),...,y(1)], ¥(0)=¢c(0) =<start>, y(7)=c(5)=<end>

ML:IX-101 Deep Learning © STEIN/VOLSKE 2022

Recurrent Neural Networks
(S2) Class-to-Sequence: Text Generation (continued)

&) — | love my cat.

— Cats and dogs lap water.

‘\U

S — It is raining cats and dogs.
S — Cats and dogs are not allowed.

— Cats and dogs have always been natural enemies.

Vocabulary: (allowed always and are been cat cats dogs enemies have i is
it lap love my natural not raining water <start> <end>)

Input: (B ORYO]. y@)... 1, yir-1)], xz(@)

Output: ¥, y(2),y(3),...,y(7)], ¥(0)=¢c(0) =<start>, y(7)=c(5)=<end>

ML:IX-102 Deep Learning © STEIN/VOLSKE 2022

Recurrent Neural Networks
(S2) Class-to-Sequence: Text Generation (continued)

&) — | love my cat.

Vocabulary: (allowed always and are been cat cats dogs enemies have i is
it lap love my natural not raining water <start> <end>)

input: [(IEBOR @) @), yir-v), <= (%)

Output: ¥, y(2),y(3),...,y(7)], ¥(0)=¢c(0) =<start>, y(7)=c(5)=<end>
N (N (Y () (0

Target: [c(1),...,¢(B)] = % 111, 1 K []
JAURURHAF:

[word_11, word_15, word_16, word_6, word_22 |

1

| love my cat

Recurrent Neural Networks
(S2) Class-to-Sequence Mapping with RNNs

whooyh) who yh(1) wh y"(2)

y(0) we y(1) we y(2)
c(0) c(1) c(2)
Input: Hidden: Target:

Output:

Recurrent Neural Networks
(S2) Class-to-Sequence Mapping with RNNSs (continued)

Wi yho) wh yh(1) wh yh(2)

y(0) we y(1)

Input: Hidden: Target:

x, [y(1),...,y(r=1)]

Output:

Recurrent Neural Networks
(S2) Class-to-Sequence Mapping with RNNSs (continued)

whooyh) whoyh(1) wh y"(2)

\\‘/L" “G/P%:”

Xp—> = \Efj ,
X s ,;I:'
@ e
C/ — e /
y(0) we y(1)
c(0)
Input: Hidden: Target:
Output:

y(t) =01 (Woy"(1)),t=1,...,7

Recurrent Neural Networks
(S2) Class-to-Sequence Mapping with RNNSs (continued)

yh(T)

W yh) wh

P
X
we y(t)
c(7)
Input: Hidden: Target:

Output: (1) = o <Wh<3;h(§t:11))>> t=1,...,T

Recurrent Neural Networks
(S2) Class-to-Sequence Mapping with RNNSs (continued)

yh(T)

W yh) wh

P
X
We y(1)
c(T)
Input: Hidden Target:

Output: V(1) = & <Wh<3;h((tt__11))>> t=1,....7

Recurrent Neural Networks
(S2) Class-to-Sequence Mapping with RNNSs (continued)

whooyh) whoyh(1) wh y"(2)

Xp—> = \Efj ,
X L ,;I/"
@ e
C/ — e /
y(0) we
c(0) c(1)
Input: Hidden: Target:

[c(1),...,c(T)]

c(T) = <end>
Output:

Recurrent Neural Networks
(S2) Class-to-Sequence Mapping with RNNSs (continued)

Wi yh©) wh yh(1) wh yh(2) yh@3) yh@) y"(5)
\\‘/L" “G/P%:\”

.
S
Pt
.
“ e

y(0) we
c(0) c(1) c(2) c¢(@3) c(4) c(5)
i love my cat <end>
Input: Hidden: Target:
x, [y(1),...,y(4)] y"(0) = o (W'x) e(1). ... e(5)]
c(b) = <end>
Output: hipy — n(y"(t—1) _
y"(t) a‘(W (c(t—l) t=1,....5

y(t) =01 (Woy"(¥)),t=1,...,5

Recurrent Neural Networks
(S2) Class-to-Sequence Mapping with RNNSs (continued)

Wi yh©) wh yh(1) wh yh(2) yh(3) yh(4) yh(5)

Input: Hidden: Target:
x, [y(1),....y(4) y"(0) = o (%) e(1),.,c(5)]
c(b) = <end>
Output: hp) — o (1N y"(t—1) _
0= (1 (D) 1,

y(t) =01 (Woy"(¥)),t=1,...,5

Recurrent Neural Networks
(S2) Class-to-Sequence Mapping with RNNSs (continued)

Wi yh) wh yh(1) wh yh(2) yh(3) yh(4)

y2) y@) vy4)

love water <end>

Input: Hidden: Target:
%, [y(1).....y(3) y"(0) = o (1W'x) e(1).....c(5)]
c(b) = <end>
Output: hp) — o (1N y"(t—1) _
y"(t) (W (y(t—l)))’t 1,...,4

y(t) =01 (Woy"(1)),t=1,...,4

Remarks:

O We denote y(0) not as input since it is predefined and does not contain any “actual
knowledge”. In particular, y(0) = ¢(0) = <start>.

e (285)

oo (0)

Recurrent Neural Networks
The IGD Algorithm for Class-to-Sequence Tasks [IGDgeq]

Algorithm: IGD¢pseq Incremental Gradient Descent for RNNs at class2seq tasks.
Input: D Multiset of examples (x, [c(1),...,c(T)]) with x € {0,1}?, c(t) € R*.
n Learning rate, a small positive constant.

Output: Whwh we Weights matrices.

1. initialize_random_weights(W', W" W°), tyaining = 0
2. REPEAT
3. ttraining = ttraining +1
4. FOREACH (x,[c(1),...,¢(T)]) € D DO
5.
Model function evaluation.
6. Calculation of residuals at all layers.
. Calculation of derivatives.
8. Parameter update = one gradient step down.
9. ENDDO
10. UNTIL(convergence(D,y(), tiaining))
11. return(W W" Wo)

Recurrent Neural Networks
The IGD Algorithm for Class-to-Sequence Tasks (continued) [IGDgeqzc]

Algorithm: IGD¢pseq Incremental Gradient Descent for RNNs at class2seq tasks.
Input: D Multiset of examples (x, [c(1),...,c(T)]) with x € {0,1}?, c(t) € R*.
n Learning rate, a small positive constant.

Output: Whwh we Weights matrices.

initialize_random_weights(W', W" W°), tyaining = 0
REPEAT
ttraining = ttraining +1
FOREACH (x,[c(1),...,¢(T)]) € D DO
Wi
FOR TO DO

g o w N

wh e
ENDDO
Calculate &°, &", &

ENDDO
UNTIL(convergence(D,y(), tyaining))
return(W', W, W°)

= O W 00 J O

e

Chapter ML:IX (continued)
|X. Deep Learning

a

[N N N

Elements of Deep Learning
Convolutional Neural Networks
Autoencoder Networks

Recurrent Neural Networks
RNNs for Machine Translation
Attention Mechanism

Self Attention and Transformers

Transformer Language Models

ML:IX-113 Deep Learning

©STEIN/VOLSKE 2022

RNNs for Machine Translation
Statistical Machine Translation (SMT)

direct
— Rule-based MT <1—E transfer-based
interlingua-based
— Example-based MT

Machipe < word-based
translation
— Statistical MT syntax-based

phrase-based

— Neural MT <1—E RNN

RNNs for Machine Translation
Statistical Machine Translation (SMT) (continued)

direct
1950 — Rule-based MT Q—E transfer-based

interlingua-based

~+— Example-based MT

1980 ! word-based
1990 — Statistical MT <1—E syntax-based

phrase-based

LSTM
2015 — Neural MT <1—|: RNN

RNNs for Machine Translation
Statistical Machine Translation (SMT) (continued)

direct
1950 — Rule-based MT Q—E transfer-based

interlingua-based

,~+— Example-based MT

1980 ! word-based
1990 — | Statistical MT <1—E syntax-based

phrase-based

LSTM
2015 — Neural MT <1—|: RNN

“Noisy channel” model applied to SMT:

Learn from a parallel corpus D a probabilistic model, P(Y | X), which can be used
to decode the channel input (the target sentence y, e.g. in German) from the
channel output (the source sentence x in a foreign language (e.g., English)).

RNNs for Machine Translation
Statistical Machine Translation (SMT) (continued)

e 11 1
lCh lebe I’neine katZe % lOVe my Cat

Y - X

p(“ich liebe meine katze” ’ “i love my cat”)
p(German_sentence ’ English_sentence)
p(sentence_in_own_language ‘ sentence_in_foreign_language)

ply |)

ML:IX-117 Deep Learning © STEIN/VOLSKE 2022

RNNs for Machine Translation
Statistical Machine Translation (SMT) (continued)

. ch 1i 1
LAY e TV

Y - X

p(“ich liebe meine katze” ’ “i love my cat”)
p(German_sentence ’ English_sentence)
p(sentence_in_own_language ’ sentence_in_foreign_language)

ply |)

Task: Given a sentence z in a foreign language (here: English), what is the most
probable translation y in our own language (here: German)?

p(y |) — max

Remarks:

a Noisy Channel model (1). When the (German) sentence y was transmitted over a noisy
channel, it got corrupted and came out as sentence x in a foreign language (English). The
task is to recover the original sentence, i.e., to decode (= translate) the English (source) into
German (target).

a Noisy Channel model (2). We can observe only z, and we ask ourselves which sentence y
might have induced x. Among the candidates for y we search the most probable sentence,
which we then consider as translation of z. l.e., the Noisy Channel model does not take
sentence y and looks for a translation z (= varies x), but takes = as given and varies among
the 4.

Tackling this translation task with coupled RNNs (= Neural Machine Translation) reflects this

decoder has to generate the most probable sentence y,.

RNNs for Machine Translation
Statistical Machine Translation (SMT) (continued)

Based on a parallel corpus D, the best translation y of a sentence x given in the
foreign language maximizes under D the probability p(y |) :

Py | x) = P& PT))(SP(Y)
argmaxy p(y ‘ CU) = argmaxy p(:U ‘ y) ' p(y) = X = X=z, x = English sentence

Y = Y=y, y = German sentence

RNNs for Machine Translation
Statistical Machine Translation (SMT) (continued)

Based on a parallel corpus D, the best translation y of a sentence x given in the
foreign language maximizes under D the probability p(y |) :

Py x) =2 PT))(SP(Y)
argmaxy p(y ‘ CC) - argmax?/ p(:U ‘ y) . p(y) = X = X=z, = English sentence
Y = Y=y, y = German sentence

1. p(y) is called “language model” and takes care of the fluency in the target
language. It is modeled as p(y1, ..., ym) = [[2Wi | Yicn—1)s - - - > Yi-1)-
Training data are (monolingual) corpora in the target language.

RNNs for Machine Translation
Statistical Machine Translation (SMT) (continued)

Based on a parallel corpus D, the best translation y of a sentence x given in the
foreign language maximizes under D the probability p(y |) :

Py | x) - POV POY)

argmax, p(y | z) = argmax, | p(z | y)|- p(y) = o
Y Y X = X=z, z = English sentence
Y = Y=y, y = German sentence

2. p(x | y) is called “translation model” and captures the translation fidelity
between two languages. It is modeled as p(x, a | y), where “a” is a vector of
alignment features. Training data are bilingual corpora.

RNNs for Machine Translation
Statistical Machine Translation (SMT) (continued)

Based on a parallel corpus D, the best translation y of a sentence x given in the
foreign language maximizes under D the probability p(y |) :

Py | x) = 2 g))(')Pm
argmaxyp(y ‘ 517) - argmax?/ p(x ‘ y) . p(y) <= X = X=z, =z = English sentence
Y = Y=y, y = German sentence

1. p(y) is called “language model” and takes care of the fluency in the target

Training data are (monolingual) corpora in the target language.

2. p(x|y) is called “translation model” and captures the translation fidelity
between two languages. It is modeled as p(x,a | y), where “a” is a vector of
alignment features. Training data are bilingual corpora.

3. argmax, is called “decoder” and operationalizes the search for the
maximization problem. Keyword: beam search

ML:IX-123 Deep Learning ©STEIN/VOLSKE 2022

Remarks (statistical machine translation) :

a Although p(y |) can be maximized directly, Bayes rule is applied since the decomposition of
p(y |) into p(z | y) and p(y) comes along with a number of advantages.

Q Inthe language model syntax, p(y) = p(y1, v, - - -, ym) denotes the probability of the event to
observe the sentence y = y1y- . . . ym, Where y; corresponds to the first word of the sentence,
Yo 1o the second, etc. The y; are realizations of random variables, which can be written in any
order as arguments of p(). l.e., to capture the word order, y; does not only denote the word,
but also its position: y; corresponds to the event “Word y; at position ¢.”

In summary, p(y1, s, - .., yn) is a short form of P(Y1 = y1, Yo = 4o, ..., Y, = yp), Where the Y;
are random variables whose realizations are the possible words at position i. Note that these
random variables are neither independent nor identically distributed.

O Learning p(x,a | y) from a parallel corpus D is a highly sophisticated endeavor since the
alignments features are complex and given as latent variables only.

RNNs for Machine Translation
Neural Machine Translation (NMT)

Concepit:

o Machine translation with a multilayer perceptron (MLP).

o Network architecture is a sequence-to-sequence model:

1. Encoder RNN, calculates an encoding of the source sentence x.

2. Decoder RNN, generates the target sentence y. The decoder RNN is a
conditional language model—it is conditioned on the RNN encoding.

o Optimization (loss minimization) is done for the network as a whole, which
means that backpropagation is performed “end-to-end”.

RNNs for Machine Translation
Neural Machine Translation (NMT) (continued)

Concepit:

. on 1i il
jon liebe po, M 1ove my cat

Y - X

Y
/—J%

ich liebe meine katze <ends>

t f f t f

<starts>

RNNs for Machine Translation
Neural Machine Translation (NMT) (continued)

Concepit:

- 11 1

Y - X

Y
/—J%

ich liebe meine katze <ends>

t t f i f

<starts>

The sequence-to-sequence RNN directly calculates p(y | z):

py|x) = plyr |) p(y2 | y1,2) - plys | 1,92, 2) - oo pyr | Y1y ooy Yro1,)

Remarks:

Q “End-to-end” is not an architectural feature of a network (observe that every network is used
in this way). It is a strategy for solving a task by not decomposing it, but by processing the
original input-output examples in an indivisible manner.

Q The sequence-to-sequence model is an example of a conditional language model. (1) ltis a
language model because the decoder is predicting the next word y; of the target sentence
based on the preceding words v, ...,y;_1. (2) It is conditional because its predictions are
also conditioned on the source sentence x. [Manning 2021, lecture CS224N]

Q In the following slides, the hidden vector y©(7°) represents the RNN encoding of the source
sentence x. In particular,

— the words z; from a source (input) sentence = are denoted as x(t),
— the words y; from a output sentence are denoted as y(t),
— the words y; from a target sentence y are denoted as c(t).

Note that we have not distinguished whether y; is output or target.

O Don’t get confused: The input y of the noisy channel becomes the target (output) of the RNN.
Similary, the output = of the noisy channel becomes the source (input) of the RNN.

RNNs for Machine Translation
Types of Learning Tasks [Recap]

(83) sequence — sequence English sentence — German sentence

i love my cat — ich liebe meine katze

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-deep-learning-introduction.pdf#learning-task-types

RNNs for Machine Translation
(S3) Sequence-to-Sequence: Machine Translation

| love my cat. Ich liebe meine Katze.

%

Cats and dogs lap water. — Katzen und Hunde lecken Wasser.
— Es regnet in Strémen.
%

0
0
a ltis raining cats and dogs.
0

Cats and dogs are not allowed. Katzen oder Hunde sind nicht erlaubt.

Vocabulary®: (allowed and are cat cats dogs i is it lap love my not
raining water)

Vocabulary?: (erlaubt es hunde ich in katze lecken liebe meine nicht
regnet sind strdmen und wasser <start> <end>)

RNNs for Machine Translation
(S3) Sequence-to-Sequence: Machine Translation (continued)

Q |love my cat. — Ich liebe meine Katze.

Vocabulary® :

Vocabulary®:

Input:

Output:

(allowed and are cat cats dogs i1 is it lap love my not
raining water)

(erlaubt es hunde ich in katze lecken liebe meine nicht
regnet sind strdmen und wasser <start> <end>)

O (0 (%) (0
(LB O, v, L d, yr=Dl x= | [|| 1. 0] | = Hove my cat
o3

= c(0) = <start>, y(7) =c(5) = <end>

<
Y
—_
~—
<
—~
[\)
S~—
<«
N
w
~—
<
Y
9
Q
=
<
—~
=)
N~——
I

RNNs for Machine Translation
(S3) Sequence-to-Sequence: Machine Translation (continued)

Q |love my cat. — Ich liebe meine Katze.

Vocabulary® :

Vocabulary®:

(allowed and are cat cats dogs i1 is it lap love my not
raining water)

(erlaubt es hunde ich in katze lecken liebe meine nicht
regnet sind strdmen und wasser <start> <end>)

O (0 (%) (0
EEO vl y@)-- 1 y=Dl x= |11 || |- 0] | = Hove my cat
o)Al

<
—~
[\)
S~—
<«
—~
w
~—
<«
Y
9
Q
=
<«
—
S
~—
I

=¢(0) = <start>, y(7) =c(5) = <end>

RNNs for Machine Translation
(S3) Sequence-to-Sequence: Machine Translation (continued)

Q |love my cat. — Ich liebe meine Katze.

Vocabulary® :

Vocabulary®:

(allowed and are cat cats dogs i1 is it lap love my not
raining water)

(erlaubt es hunde ich in katze lecken liebe meine nicht
regnet sind strdmen und wasser <start> <end>)

0\ [0y (9) (0
[T y(O) F, y(1)], y(2)],...], y(r—1)], x= 6 (1) 1 : (1) = | love my cat
JRUINEINE

<
—
[\
—
<«
—~
w
~—
<«
N
9
Q
=
<«
—
S
~—
I

=¢(0) = <start>, y(7) =c(5) = <end>

RNNs for Machine Translation
(S3) Sequence-to-Sequence: Machine Translation (continued)

Q |love my cat. — Ich liebe meine Katze.

Vocabulary® :

Vocabulary®:

(allowed and are cat cats dogs i1 is it lap love my not
raining water)

(erlaubt es hunde ich in katze lecken liebe meine nicht
regnet sind strdmen und wasser <start> <end>)

0\ [0y (9) (0
T y(O)F, ¥y(1)], ¥(2)],...], y(r—1)], x= 6 (1) 1 : (1) = | love my cat
JRUINEINE

<
—~
[\
~—
<
—
(O8]
~—
<«
~
9
Q
=
<«
—
S
~—
I

=¢(0) = <start>, y(7) =c(5) = <end>

RNNs for Machine Translation
(S3) Sequence-to-Sequence: Machine Translation (continued)

Q |love my cat. — Ich liebe meine Katze.

Vocabulary® :

Vocabulary®:

(allowed and are cat cats dogs i1 is it lap love my not
raining water)

(erlaubt es hunde ich in katze lecken liebe meine nicht
regnet sind strdmen und wasser <start> <end>)

0\ [0y (9) (0
[Ty (0)F, ¥y(1)], ¥(2)],...], y(r—1)], x= 6 (1) 1 : (1) = | love my cat
JRUINEINE

<
—~
[\
~—
<
—
(O8]
~—
<«
~
9
Q
=
<«
—
S
~—
I

= ¢(0) = <start>, y(7) =c(5) = <end>

RNNs for Machine Translation
(S3) Sequence-to-Sequence: Machine Translation (continued)

Q |love my cat. — Ich liebe meine Katze.

Vocabulary®: (allowed and are cat cats dogs i is it lap love my not
raining water)

Vocabulary?: (erlaubt es hunde ich in katze lecken liebe meine nicht
regnet sind strdmen und wasser <start> <end>)

0 0 0
Input: LB YO ¥, ¥)...], y(r=1)], x= |[1], (1) , 1 , %) = | love my cat
SRTINESNE

c(0) = <start>, y(7) =c(5) = <end>

Output: . 7(2), y(3), - -, y(v%)], ¥(0)

N0 (9 (9 (0
Target: lc(1),....e®)] = [|oL1: L], 6 [] = Ich liebe meine Katze

RNNs for Machine Translation
(S3) Sequence-to-Sequence Mapping with RNNs

y¢(0) wn

Input: Hidden: Target:

Output:

RNNs for Machine Translation
(S3) Sequence-to-Sequence Mapping with RNNS (continued)

y¢(0) wn

Input: Hidden: Target:

X, [Y(1>7 s ay(T_l)]

Output:

RNNs for Machine Translation
(S3) Sequence-to-Sequence Mapping with RNNS (continued)

ye(0) wh ye(1)

Input: Hidden: Target:

Output:
y(t) = o1 (Woyd(t)) t=1,...,7

RNNs for Machine Translation
(S3) Sequence-to-Sequence Mapping with RNNS (continued)

—_—

we y([)
c(T9)

Input: Hidden: Target:

Output yi(t)=o (Wh@d(set__f)))) fete T

RNNs for Machine Translation
(S3) Sequence-to-Sequence Mapping with RNNS (continued)

—>

we y([)
c(T9)

Input: Hidden: Target:

Output:

RNNs for Machine Translation
(S3) Sequence-to-Sequence Mapping with RNNS (continued)

y¢(0) wn

Input: Hidden: Target:
[c(1),...,e(T)]
c(T) = <end>

Output:

RNNs for Machine Translation
(S3) Sequence-to-Sequence Mapping with RNNS (continued)

y4(0)
ye(0) wh ye(1) ye(4) wn yd(1)

c(1) c®)
ich liebe meine katze <ends>

Input: Hidden: Target:

x, [y(1),....y(4) ve(l) = o (wh(ye(t—U) to14 e ()
x(?) ¢(5) = <end>

Output:

y(t) =01 (W°yd(t)),t=1,....5 yi(t) =o (Wh@dét__ll)))) t=1,...,5

RNNs for Machine Translation
(S3) Sequence-to-Sequence Mapping with RNNS (continued)

y4(0)
ye(0) wh ye(1) ye(4) wn yd(1)

ich liebe meine katze <end>

Input: Hidden: Target:

x, [y(1),....y(4) ve(l) = o (wh(ye(t—U) to14 e ()
x(?) ¢(5) = <end>

Output:

(-1
PSSR0 R ()) RS B

Remarks:

Q The final encoder hidden state, y®(7°), represents the encoding of the source sentence.
y®(T*®) is unified with the first decoder hidden state, y9(0).

O The encoder hidden state y®(¢) represents the input sequence up to time step ¢,
x(1),....x(8)]:

0 The decoder hidden state y9(¢) represents the entire input sequence [x(1),...,x(T®)], as well
as the output sequence up to time step t—1, [y(1),...,y(t — 1)].

O Note that, as before, we are given a model function y(), which maps some input (actually, a
sequence of feature vectors, [x(1),...,x(7°)]) to some output (a sequence of output vectors,
y(1),...,y(T9).

RNNs for Machine Translation
Sequence-to-Sequence RNNs are Conditional Language Models

ich liebe meine katze <ends>

RNNs for Machine Translation

Sequence-to-Sequence RNNs are Conditional Language Models (continued)

ich liebe meine katze <ends>

The sequence-to-sequence RNN directly calculates p(y |) :

pylz) = plyi | x) p(y2 | yi,z) - pys | y1, 92,) - p(ya | Y1, y2, Y3, T)

RNNs for Machine Translation

Sequence-to-Sequence RNNs are Conditional Language Models (continued)

ich liebe meine katze <ends>

The sequence-to-sequence RNN directly calculates p(y |) :

p(y|x) = ply(1),....y(5) | x,y(0)),

= py(1) [x,5(0)) - p(y(2) | x,y(0),y(1)) -...- p(y(5) | x,y(0),...,y(4))

RNNs for Machine Translation

Sequence-to-Sequence RNNs are Conditional Language Models (continued)

ich liebe meine katze <ends>

The sequence-to-sequence RNN directly calculates p(y |) :

p(y|x) = ply(1),....y(5) | x,y(0)),

= |p(y(1) [x,y(0)| p(y(2) | x,y(0),y(1)) -...- p(y(5) | x,y(0),...,y(4))

RNNs for Machine Translation

Sequence-to-Sequence RNNs are Conditional Language Models (continued)

ich liebe meine katze <ends>

The sequence-to-sequence RNN directly calculates p(y |) :

p(y|x) = ply(1),....y(5) | x,y(0)),

= py(1) [%,5(0)) -|p(y(2) | x,y(0),y(1)|-..- p(y(5) | x,y(0),...,y(4))

RNNs for Machine Translation

Sequence-to-Sequence RNNs are Conditional Language Models (continued)

ich liebe meine katze <ends>

The sequence-to-sequence RNN directly calculates p(y |) :

p(y|x) = ply(1),....y(5) | x,y(0)),

= py(1) [x,5(0)) - p(y(2) | x,y(0),y(1)) -...-|p(y(5) | x,y(0),...,y(4))

Remarks:

o1-function). Here, the illustration of generation (aka decoding) steps shows an
argmax-operation on each y(t), called “greedy decoding” : the word with the highest
probability is chosen.

0 Tomaximize [[;_,;p (y(?) | x,¥(0),...,y(t—1)), a complete search in the space of all
sequences (target sentences) that can be generated is necessary, which is computationally
intractable. Instead, heuristic search such as beam search is applied, where a beam size
around 5 to 10 has shown good results in practice.

The beam size is the number of generated successors in each decoding step; they are added
to the OPEN list of the heuristic search algorithm. [Course on Search Algorithms]

O Sequence-to-sequence RNNs can be “stacked”, this way forming a multilayer RNN, which is
able to compute more complex representations. The idea is that the lower (higher) RNNs
should compute lower-level (higher-level) features.

Practice has shown that 2-4 layers are useful for neural machine translation, while
transformer-based networks are typically deeper and comprise 12-24 layers.
[Manning 2021, lecture CS224N]

https://webis.de/lecturenotes.html#search

