
Chapter ML:III

III. Linear Models
q Logistic Regression
q Loss Computation in Detail
q Overfitting
q Regularization
q Gradient Descent in Detail
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Logistic Regression
Binary Classification Problems

Setting:

q X is a multiset of feature vectors from an
::::::::
inner

:::::::::::::
product

::::::::::
space

::::
X, X ⊆ Rp.

q C = {0, 1} is a set of two classes. Similarly: {−1, 1}, {	,⊕}, {no, yes}, etc.

q D = {(x1, c1), . . . , (xn, cn)} ⊆ X × C is a multiset of examples.

Learning task:

q Fit the examples in D with a logistic model function.
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Logistic Regression
Binary Classification Problems

Setting:

q X is a multiset of feature vectors from an
::::::::
inner

:::::::::::::
product

::::::::::
space

::::
X, X ⊆ Rp.

q C = {0, 1} is a set of two classes. Similarly: {−1, 1}, {	,⊕}, {no, yes}, etc.

q D = {(x1, c1), . . . , (xn, cn)} ⊆ X × C is a multiset of examples.

Learning task:

q Fit the examples in D with a logistic model function.

Examples for binary classification problems:

q Is an email spam or ham?

q Is a patient infected or healthy?

q Is a bank customer creditworthy or not?
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Logistic Regression
Linear Regression

x  (|obscene words|)

(spam)  1

(ham)  -1

y(x)

q Linear regression: y(x)
(?)
= wTx

q Classification: Predict

{
“spam”, if wTx ≥ 0

“ham”, if wTx < 0
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Logistic Regression
Linear Regression (continued)

x  (|obscene words|)

(spam)  1

(ham)  -1

y(x)

- -- + +++
x'

0

wTx ≥ 0wTx < 0

q Linear regression: y(x)
(?)
= wTx

q Classification: Predict

{
“spam”, if wTx ≥ 0

“ham”, if wTx < 0
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Logistic Regression
Linear Regression (continued)

x  (|obscene words|)

(spam)  1

(ham)  -1

y(x)

q Linear regression: y(x)
(?)
= wTx

q Classification: Predict

{
“spam”, if wTx ≥ 0

“ham”, if wTx < 0
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Logistic Regression
Linear Regression (continued)

x  (|obscene words|)

(spam)  1

(ham)  -1

y(x)

- -- - -
x'

0

wTx ≥ 0wTx < 0

++ +

q Linear regression: y(x)
(?)
= wTx

q Classification: Predict

{
“spam”, if wTx ≥ 0

“ham”, if wTx < 0
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Logistic Regression
Linear Regression (continued)

x  (|obscene words|)

(spam)  1

(ham)  -1

y(x)

- -- + +++
x'

0

wTx ≥ 0wTx < 0

Restrict the range of y(x) to reflect the two-class classification semantics:

−1 ≤ y(x) ≤ 1 or 0 ≤ y(x) ≤ 1
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Remarks:

(?)
:::::::::
Recap. We consider the feature vector x in its extended form when used as operand in a
scalar product with the weight vector, wTx, and consequently, when noted as argument of the
model function, y(x). I.e., x = (1, x1, . . . , xp)

T ∈ Rp+1, and x0 = 1.
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Logistic Regression
Sigmoid (Logistic) Function

1

0.5

0
z

σ(z)

+ +++ ++

- -- -- - -

Linear regression Sigmoid function Logistic model function

wTx ◦ σ(z) =
1

1 + e−z
; y(x) ≡ σ(wTx)

(?)
=

1

1 + e−wTx

y(x) : Rp+1 → (0; 1)
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Logistic Regression
Sigmoid (Logistic) Function (continued)

1

0.5

0
z

σ(z)

+ +++ ++

- -- -- - -

Linear regression Sigmoid function Logistic model function

wTx ◦ σ(z) =
1

1 + e−z
; y(x) ≡ σ(wTx)

(?)
=

1

1 + e−wTx

y(x) : Rp+1 → (0; 1)
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Logistic Regression
Sigmoid (Logistic) Function (continued)

1

0.5

0
z

σ(z)

+ +++ ++

- -- -- - -

σ(wTx)

wTx

Linear regression Sigmoid function Logistic model function

wTx ◦ σ(z) =
1

1 + e−z
; y(x) ≡ σ(wTx)

(?)
=

1

1 + e−wTx

y(x) : Rp+1 → (0; 1)
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Logistic Regression
Sigmoid (Logistic) Function (continued)

1

0.5

0
z

σ(z)

+ +++ ++

- -- -- - -

σ(wTx)

wTx

Linear regression Sigmoid function Logistic model function

wTx ◦ σ(z) =
1

1 + e−z
; y(x) ≡ σ(wTx)

(?)
=

1

1 + e−wTx

y(x) : Rp+1 → (0; 1)
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Logistic Regression
Interpretation of the Logistic Model Function

y(x) = σ(wTx) is interpreted as the estimated probability for the event C=1 :

q 1− y(x) = P (C=1 | X=x;w) =: p(1 | x;w), “Probability for C=1 given x, parameterized by w.”

q 1− y(x) = P (C=0 | X=x;w) =: p(0 | x;w), “Probability for C=0 given x, parameterized by w.”
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Logistic Regression
Interpretation of the Logistic Model Function (continued)

y(x) = σ(wTx) is interpreted as the estimated probability for the event C=1 :

q 1− y(x) = P (C=1 | X=x;w) =: p(1 | x;w), “Probability for C=1 given x, parameterized by w.”

q 1− y(x) = P (C=0 | X=x;w) =: p(0 | x;w), “Probability for C=0 given x, parameterized by w.”

Observations D, given
as “+” and “-”, along with
the probability values as
specified by σ(wTx):

1

0.5

0
z

σ(z)

+ +++ ++

- -- -- - -

σ(wTx)

wTx

p(1|x )= 0.15 p(1|x )= 0.8 p(1|x )= 0.95

same x  →  label noise

p (0|x )  = 1-p (1|x )  = 0.95

p (0|x )  = 1-p (1|x )  = 0.6

p (0|x )  = 1-p (1|x )  = 0.05
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Logistic Regression
Interpretation of the Logistic Model Function (continued)

y(x) = σ(wTx) is interpreted as the estimated probability for the event C=1 :

q 1− y(x) = P (C=1 | X=x;w) =: p(1 | x;w), “Probability for C=1 given x, parameterized by w.”

q 1− y(x) = P (C=0 | X=x;w) =: p(0 | x;w), “Probability for C=0 given x, parameterized by w.”

Example (email spam classification):

x =

(
x0

x1

)
=

(
1

|obscene words|

)
, x1 =

(
1

5

)
and y(x1) = 0.67

; 67% chance that this email is spam.
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Logistic Regression
Interpretation of the Logistic Model Function (continued)

y(x) = σ(wTx) is interpreted as the estimated probability for the event C=1 :

q 1− y(x) = P (C=1 | X=x;w) =: p(1 | x;w), “Probability for C=1 given x, parameterized by w.”

q 1− y(x) = P (C=0 | X=x;w) =: p(0 | x;w), “Probability for C=0 given x, parameterized by w.”

Example (email spam classification):

x =

(
x0

x1

)
=

(
1

|obscene words|

)
, x1 =

(
1

5

)
and y(x1) = 0.67

; 67% chance that this email is spam.
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Logistic Regression
Interpretation of the Logistic Model Function (continued)

y(x) = σ(wTx) is interpreted as the estimated probability for the event C=1 :

q 1− y(x) = P (C=1 | X=x;w) =: p(1 | x;w), “Probability for C=1 given x, parameterized by w.”

q 1− y(x) = P (C=0 | X=x;w) =: p(0 | x;w), “Probability for C=0 given x, parameterized by w.”

Example (email spam classification):

x =

(
x0

x1

)
=

(
1

|obscene words|

)
, x1 =

(
1

5

)
and y(x1) = 0.67

; 67% chance that this email is spam.

Classification: Predict


1, if σ(wTx) ≥ 0.5 ⇔ wTx ≥ 0

0, if σ(wTx) < 0.5 ⇔ wTx < 0
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Logistic Regression
Interpretation of the Logistic Model Function (continued)

y(x) = σ(wTx) is interpreted as the estimated probability for the event C=1 :

q 1− y(x) = P (C=1 | X=x;w) =: p(1 | x;w), “Probability for C=1 given x, parameterized by w.”

q 1− y(x) = P (C=0 | X=x;w) =: p(0 | x;w), “Probability for C=0 given x, parameterized by w.”

Example (email spam classification):

x =

(
x0

x1

)
=

(
1

|obscene words|

)
, x1 =

(
1

5

)
and y(x1) = 0.67

; 67% chance that this email is spam.

Classification: Predict


1, if σ(wTx) ≥ 0.5 ⇔ wTx ≥ 0

0, if σ(wTx) < 0.5 ⇔ wTx < 0
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Logistic Regression
Interpretation of the Logistic Model Function (continued)

y(x) = σ(wTx) is interpreted as the estimated probability for the event C=1 :

q 1− y(x) = P (C=1 | X=x;w) =: p(1 | x;w), “Probability for C=1 given x, parameterized by w.”

q 1− y(x) = P (C=0 | X=x;w) =: p(0 | x;w), “Probability for C=0 given x, parameterized by w.”

Estimate optimum w by maximizing the probability, p(D;w) :

wML = argmax
w∈Rp+1

p(D;w)

⇔ Estimate optimum w by minimizing the logistic loss, Lσ(w) :

wML = argmin
w∈Rp+1

Lσ(w)
[
:::::
RSS

::::::::::::::
minimization]
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Remarks (probabilistic view to classification) :

q If y(x) = σ(wTx) is interpreted as “probability for C=1 given feature vector x”, then w is the
(unique) characterizing parameter vector of the hidden stochastic process that generates the
observed data D.

::::::::
Recap. As a consequence, w is not the realization of a random variable—which would come
along with a distribution—but an exogenous parameter, which is varied in order to find the
maximum probability p(D;w) or the minimum loss Lσ(w).

The fact that w is an exogenous parameter and not a the realization of a random variable is
reflected by the notation, which uses a »;« instead of a »|« in p( · ).

q The underlying probability space—which can be left implicit—looks as follows:

The sample space Ω corresponds to a set O of real-world objects, P is a probability measure
defined on P(Ω). The classification task (experiment) suggests two types of random
variables, C : Ω→ X and C : Ω→ {0, 1}.
See section

:::::::::::::
Evaluating

::::::::::::::::::
Effectiveness of part Machine Learning Basics for an illustration of the

probabilistic view to classification, and section
::::::::::::::
Probability

:::::::::
Basics of part Bayesian Learning

for a recap of concepts from probability theory.

q X and C denote (multivariate) random variables with ranges X and C respectively.

X corresponds to a
::::::::
model

:::::::::::::
formation

::::::::::
function α that returns for a real-world object o ∈ O its

feature vector x, x = α(o), and C corresponds to an
::::::
ideal

::::::::::::
classifier γ that returns its class c,

c = γ(o).
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Remarks (probabilistic view to classification) : (continued)

q The interpretation of y(x) = σ(wTx) as probability for the event C=1 is not a mathematical
consequence but a decision of the modeler. This decision is based on the advantageous
properties of the sigmoid function, on practical considerations, and on heuristic simplifications
of the real world.

Consider the following two aspects where an interpretation of σ(wTx) is questionable:

1. The sigmoid function implies that with wTx→ +∞ we get y(x)→ 1 or P (C=1)→ 1.
Likewise, with wTx→ −∞ we get P (C=1)→ 0. Though such a strict monotonicity
appears self-evident, it need not necessarily correspond to the observed behavior in a
real world experiment.

2. The sigmoid function implies a smooth, virtually linear transition from low probability
values (around 0.1) to high probability values (around 0.9) as its argument wTx increases.

This link between the continuous growth of wTx and the continuous growth of probability
values P (C=1) presumes a proportional connection between cause (in the form of X=x)
and effect (in the form of C=1). Again, such a relation appears sensible but may not
necessarily model the real world.
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Remarks (derivation of Lσ(w)) :

q The most probable (= optimum) hypothesis in the space H of possible hypotheses, hML, can
be estimated with the

::::::::::::
maximum

:::::::::::::
likelihood

::::::::::::
principle: hML = argmax

h∈H
p(D;h).

q Applied to logistic regression: wML = argmax
w∈Rp+1

p(D;w), where

argmax
w∈Rp+1

p(D;w) = argmax
w∈Rp+1

∏
(x,c)∈D

p(x, c;w) = argmax
w∈Rp+1

∏
(x,c)∈D

(p(x) · p(c | x;w))

= argmax
w∈Rp+1

∏
(x,c)∈D

p(x) ·
∏

(x,c)∈D

p(c | x;w)
(1)
= argmax

w∈Rp+1

∏
(x,c)∈D

p(c | x;w)

= argmax
w∈Rp+1

∏
(x,1)∈D

σ(wTx) ·
∏

(x,0)∈D

(1− σ(wTx))

= argmax
w∈Rp+1

∏
(x,1)∈D

y(x) ·
∏

(x,0)∈D

(1− y(x))

(2)
= argmax

w∈Rp+1

log
∏

(x,1)∈D

y(x) + log
∏

(x,0)∈D

(1− y(x))

= argmax
w∈Rp+1

∑
(x,1)∈D

log y(x) +
∑

(x,0)∈D

log(1− y(x))

= ↪→ p. 24
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Remarks (derivation of Lσ(w)) : (continued)

= argmax
w∈Rp+1

∑
(x,c)∈D

c · log y(x) + (1− c) · log(1− y(x))

(3)
= argmin

w∈Rp+1

−
∑

(x,c)∈D

c · log y(x) + (1− c) · log(1− y(x))

(4)
= argmin

w∈Rp+1

∑
(x,c)∈D

lσ :=︷ ︸︸ ︷
−c · log(y(x)) − (1− c) · log(1− y(x))

=: argmin
w∈Rp+1

∑
(x,c)∈D

lσ(c, y(x)) = argmin
w∈Rp+1

Lσ(w)

q Hints:

(1)
∏

(x,c)∈D p(x) is constant with respect to the variation of w.

(2) argmaxx f(x) = argmaxx g ◦ f(x) (similarly for argmin) if g(z) is a strictly monotonically
increasing function. Here, log(z) is in the role of g(z). Conversely, if g(z) is a strictly
monotonically decreasing function, then argmaxx f(x) = argminx g ◦ f(x).

(3) The maximization problem (the argmax-expression) can be reformulated as minimization
problem, i.e., as an argmin-expression. See in this regard the second part of Hint (1).

(4) The argument of the argmin-expression quantifies Lσ(w), the global logistic loss related
to some w, and, analogously, the pointwise logistic loss, lσ(c, y(x)).
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Logistic Regression
Recap. Linear Regression for Classification (illustrated for p = 2)
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Logistic Regression
Recap. Linear Regression for Classification (illustrated for p = 2) (continued)
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Logistic Regression
Logistic Regression for Classification (illustrated for p = 2)
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Logistic Regression
Logistic Regression for Classification (illustrated for p = 2) (continued)

Use logistic regression to learn w from D, where y(x) =
1

1 + e−wTx
.

x1
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y(x1, x2)

0
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+
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+

+
+

+

+ +
+
+

+
+

+

+
+

+

+

+

+

+

y(x1, x2) =
1

1 + e−(w0 + w1 · x1 + w2 · x2)
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Logistic Regression
Logistic Regression for Classification (illustrated for p = 2) (continued)

Use logistic regression to learn w from D, where y(x) =
1

1 + e−wTx
.

x1

x2

1
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- -
-
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-
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-
-- -- - -

y(x1, x2)

0
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++
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+

+

+ +
+

+
+

+

+ +
+
+

+
+

+

+
+

+

+

+

+

+

(w1 w2)T
0.5

y(x1, x2) =
1

1 + e−(w0 + w1 · x1 + w2 · x2)

ML:III-29 Linear Models © STEIN 2022



Logistic Regression
Logistic Regression for Classification (illustrated for p = 2) (continued)

Use logistic regression to learn w from D, where y(x) =
1

1 + e−wTx
.

x1
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+

(w1 w2)T
0.5

Classification: Predict


1, if σ(wTx) ≥ 0.5 ⇔ wTx ≥ 0

0, if σ(wTx) < 0.5 ⇔ wTx < 0
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Logistic Regression
Logistic Regression for Classification (illustrated for p = 2) (continued)

Use logistic regression to learn w from D, where y(x) =
1

1 + e−wTx
.
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wTx ≥ 0wTx < 0

(w1 w2)T

Classification: Predict


1, if σ(wTx) ≥ 0.5 ⇔ wTx ≥ 0

0, if σ(wTx) < 0.5 ⇔ wTx < 0
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Logistic Regression
Logistic Regression for Classification (illustrated for p = 2) (continued)

Use logistic regression to learn w from D, where y(x) =
1

1 + e−wTx
.
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Classification: Predict


1, if σ(wTx) ≥ 0.5 ⇔ wTx ≥ 0

0, if σ(wTx) < 0.5 ⇔ wTx < 0
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Logistic Regression
The BGDσ Algorithm [algorithms:

:::::
LMS BGDσ

:::
PT

:::::
BGD

::::
IGD ]

Algorithm: BGDσ Batch Gradient Descent.
Input: D Multiset of examples (x, c) with x ∈ Rp, c ∈ {0, 1}.

η Learning rate, a small positive constant.
Output: w Weight vector from Rp+1. (= hypothesis)

BGDσ(D, η)

1. initialize_random_weights(w), t = 0

2. REPEAT

3. t = t+ 1, ∆w = 0

4. FOREACH (x, c) ∈ D DO

5. y(x)
(?)
= σ(wTx) = 1

1+e−wT x

6. δ = c− y(x)

7. ∆w
(?)
= ∆w + η · δ · x // −δ · x is the derivative of lσ(c, y(x)) wrt.w.

8. ENDDO

9. w = w + ∆w

10. UNTIL(convergence(D, y( · ), t))
11. return(w)
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Logistic Regression
The BGDσ Algorithm [algorithms:

:::::
LMS BGDσ

:::
PT

:::::
BGD

::::
IGD ]

Algorithm: BGDσ Batch Gradient Descent.
Input: D Multiset of examples (x, c) with x ∈ Rp, c ∈ {0, 1}.

η Learning rate, a small positive constant.
Output: w Weight vector from Rp+1. (= hypothesis)

BGDσ(D, η)

1. initialize_random_weights(w), t = 0

2. REPEAT

3. t = t+ 1, ∆w = 0

4. FOREACH (x, c) ∈ D DO

5. y(x)
(?)
= σ(wTx) = 1

1+e−wT x

6. δ = c− y(x)

7. ∆w
(?)
= ∆w + η · δ · x // −δ · x is the derivative of lσ(c, y(x)) wrt.w.

8. ENDDO

9. w = w + ∆w

10. UNTIL(convergence(D, y( · ), t))
11. return(w)

Model function evaluation.

Calculation of residual.

Calculation of derivative, accumulate for entire D.

Parameter vector update = one gradient step down.
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Remarks:

q The BGDσ Algorithm is an iterative method to estimate wML in the model function
y(x) = σ(wTx). There is no direct method (such as the normal equations in linear regression)
to tackle the optimization problem.

q The BGDσ Algorithm exploits the derivative of the pointwise logistic loss lσ(c, y(x)) with
respect to w, which is δ · x = (c− y(x)) · x = (c− σ(wTx)) · x. The derivation of this term, as
well as notes regarding the speed of convergence of the basic gradient descent are given in
section

:::::::::::
Gradient

:::::::::::
Descent

:::
in

:::::::::
Detail of part Linear Models.

q Each BGDσ iteration “REPEAT . . .UNTIL”

1. computes the direction of steepest loss descent as
−

:::::::::::
∇Lσ(wt) =

∑
(x,c)∈D (c− yt(x)) · x, and

2. updates wt by taking a step of length η in this direction.

q
::::::::
Recap. The function convergence( · ) can analyze the global logistic loss, Lσ(wt), or the norm
of the loss gradient, ||∇Lσ(wt)||, and compare it to a small positive bound ε. Consider in this
regard the vectors of observed and computed classes, D|c and y(D|x) respectively. In
addition, the function may check via t an upper bound on the number of iterations.
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Logistic Regression
Machine Learning Stack for Logistic Regression

Optimization approach

Optimization objective
Loss function [ + Regularization ]

Model function ; Hypothesis space

4

Task

Data

BGD, Newton-Raphson, BFGS, Conjugate GD

q Objective: minimize logistic loss Lσ(w)

q Regularization: none
q Loss: lσ(c,y(x)) = −c·log(y(x))−(1−c)·log(1−y(x))

q Hypothesis space: w ∈ Rp+1

q Logistic model: y(x) = σ(wTx) = 1

1+e−wT x

Binary classification

D = {(x1, c1), . . . , (xn, cn)} ⊆ X × {0, 1}
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Logistic Regression
Machine Learning Stack for Logistic Regression (continued)

Optimization approach

Optimization objective
Loss function [ + Regularization ]

Model function ; Hypothesis space

4

Task

Data

BGD, Newton-Raphson, BFGS, Conjugate GD

q Objective: minimize logistic loss Lσ(w)

q Regularization: none
q Loss: lσ(c,y(x)) = −c·log(y(x))−(1−c)·log(1−y(x))

q Hypothesis space: w ∈ Rp+1

q Logistic model: y(x) = σ(wTx) = 1

1+e−wT x

Binary classification

D = {(x1, c1), . . . , (xn, cn)} ⊆ X × {0, 1}
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Logistic Regression
Machine Learning Stack for Logistic Regression (continued)

Optimization approach

Optimization objective
Loss function [ + Regularization ]

Model function ; Hypothesis space

4

Task

Data

BGD, Newton-Raphson, BFGS, Conjugate GD

q Objective: minimize logistic loss Lσ(w)

q Regularization: none
q Loss: lσ(c,y(x)) = −c·log(y(x))−(1−c)·log(1−y(x))

q Hypothesis space: w ∈ Rp+1

q Logistic model: y(x) = σ(wTx) = 1

1+e−wT x

Binary classification

D = {(x1, c1), . . . , (xn, cn)} ⊆ X × {0, 1}
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Logistic Regression
Machine Learning Stack for Logistic Regression (continued)

Optimization approach

Optimization objective
Loss function [ + Regularization ]

Model function ; Hypothesis space

4

Task

Data

BGD, Newton-Raphson, BFGS, Conjugate GD

q Objective: minimize logistic loss Lσ(w)

q Regularization: none
q Loss: lσ(c,y(x)) = −c·log(y(x))−(1−c)·log(1−y(x))

q Hypothesis space: w ∈ Rp+1

q Logistic model: y(x) = σ(wTx) = 1

1+e−wT x

Binary classification

D = {(x1, c1), . . . , (xn, cn)} ⊆ X × {0, 1}

ML:III-39 Linear Models © STEIN 2022



Logistic Regression
Machine Learning Stack for Logistic Regression (continued)

Optimization approach

Optimization objective
Loss function [ + Regularization ]

Model function ; Hypothesis space

4

Task

Data

BGD, Newton-Raphson, BFGS, Conjugate GD

q Objective: minimize logistic loss Lσ(w)

q Regularization: none
q Loss: lσ(c,y(x)) = −c·log(y(x))−(1−c)·log(1−y(x))

q Hypothesis space: w ∈ Rp+1

q Logistic model: y(x) = σ(wTx) = 1

1+e−wT x

Binary classification

D = {(x1, c1), . . . , (xn, cn)} ⊆ X × {0, 1}
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Logistic Regression
Non-Linear Decision Boundaries [

::::::
linear

::::::::::::
regression]
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+
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+ +

Higher order polynomial terms in the features (
:::::::::
linear

:::
in

::::::
the

:::::::::::::::::::
parameters):

y(x) = σ(w0 + w1 · x1 + w2 · x2 + w3 · x2
1 + w4 · x2

2)
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Logistic Regression
Non-Linear Decision Boundaries (continued) [

::::::
linear

::::::::::::
regression]
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1
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Higher order polynomial terms in the features (
:::::::::
linear

:::
in

::::::
the

:::::::::::::::::::
parameters):

y(x) = σ(w0 + w1 · x1 + w2 · x2 + w3 · x2
1 + w4 · x2

2)
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Logistic Regression
Non-Linear Decision Boundaries (continued) [

::::::
linear

::::::::::::
regression]

x2
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1
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x1
2 + x2

2  = 1

Higher order polynomial terms in the features (
:::::::::
linear

:::
in

::::::
the

:::::::::::::::::::
parameters):

y(x) = σ(w0 + w1 · x1 + w2 · x2 + w3 · x2
1 + w4 · x2

2)

with w =


−1

0
0
1
1

 ; y(x) =
1

1 + e−(−1 + x21 + x22)
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Logistic Regression
Non-Linear Decision Boundaries (continued) [

::::::
linear

::::::::::::
regression]

x2

x1

1

-1

1-1

c(x) = 1

c(x) = 0

Higher order polynomial terms in the features (
:::::::::
linear

:::
in

::::::
the

:::::::::::::::::::
parameters):

y(x) = σ(w0 + w1 · x1 + w2 · x2 + w3 · x2
1 + w4 · x2

2)

with w =


−1

0
0
1
1

 ; y(x) =
1

1 + e−(−1 + x21 + x22)

Classification: Predict

{
1, if x2

1 + x2
2 ≥ 1 ⇔ wTx ≥ 0

0, if x2
1 + x2

2 < 1 ⇔ wTx < 0
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Logistic Regression
Non-Linear Decision Boundaries (continued) [

::::::
linear

::::::::::::
regression]

x2

x1

1

-1

1-1

c(x) = 1

c(x) = 0

More complex polynomials entail more complex decision boundaries:

y(x) = σ(w0 + w1 · x1 + w2 · x2 + w3 · x2
1 + w4 · x2

1 · x2 + w5 · x2
1 · x2

2 + . . .)
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Remarks:

q Under logistic regression the structure of a hypothesis, i.e., the forms of possible decision
boundaries, is identical to the hypothesis structure under linear regression. Similarly, the
respective hypothesis spaces are the same. Hence, the expressiveness, i.e., the complexity
of classification problems that can be tackled (or, the effectiveness at which classification
problems can be decided) is identical for the two regression approaches.

q Linear regression and logistic regression differ in the way how the model function parameters,
w, are determined. In both cases the optimum w is the result of a loss minimization problem.

Recall that “loss” means “
:::::::::::::::::
interpretation

:::
of

:::::::::::::
residuals.” Linear regression and logistic regression

differ with respect to this interpretation: While the former simply squares the residuals, this
way putting a high weight onto outliers, the latter models an increasing confidence in class
membership probability with increasing hyperplane distance. This different interpretation will
usually lead to a different parameter vector w, i.e., a different hyperplane.

q Note that the term “hypothesis” is sometimes used to refer to the model function y(x), the
other time it refers to the parameters w of a model function. However, this is more of a
convention that makes no difference to the overall argument.
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Chapter ML:III

III. Linear Models
q Logistic Regression
q Loss Computation in Detail
q Overfitting
q Regularization
q Gradient Descent in Detail
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Loss Computation in Detail
Loss Computation in the Machine Learning Stack

Optimization approach

Optimization objective
Loss function [ + Regularization ]

Model function ; Hypothesis space

4

Task

Data

...

q Objective: minimize loss
q Regularization: none
q Loss: 0/1 loss,

squared loss,
logistic loss,
cross-entropy loss,
hinge loss

...

...
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Remarks:

q Given a hypothesis w, its (global) loss, L(w), tells us something about the effectiveness of w.
When used as sole criterion (e.g., no regularization is applied) we select from two hypotheses
that with the smaller loss. I.e., the most effective hypothesis is found by loss minimization.

Conversely, we call a function, whose minimization determines the most effective hypothesis,
a loss function.

q Loss functions can be distinguished with respect to the problem class they are typically
applied to: regression versus classification. Keep in mind that this distinction is not unique
since loss functions with continuous output are applied to classification problems as well.

q Furthermore, we distinguish the

1. pointwise loss l(c, y(x)), which is computed for a single x, and the

2. global loss L(w), which accumulates the pointwise losses of all x ∈ X for the weight
vector w used in a specific y(x):

L(w) =
∑

(x,c)∈D

l(c, y(x))

The pointwise loss is also called per-example loss. [p.268, Goodfellow/Bengio/Courville 2016]

q Instead of “loss” (function, computation) also the terms “error” (function, computation), “cost”
(function, computation), or “performance” (function, computation) are used, usually with the
same semantics as introduced here. We will use the term “error” for classification problems
and the term “loss” for both classification and regression problems.

ML:III-49 Linear Models © STEIN 2022



Loss Computation in Detail
Linear Regression

q The pointwise loss, l(c, y(x)), quantifies the error introduced by some x. The
loss depends on a hypothesis y(x) and the true class, c, of x.

q For y(x) = wTx we define the following pointwise loss functions:

– 0/1 loss. l0/1(c, y(x)) = I6=(c, sign(y(x))) =

{
0 if c = sign(y(x))

1 otherwise
– Squared loss. l2(c, y(x)) = (c− y(x))2
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Loss Computation in Detail
Linear Regression (continued)

q The pointwise loss, l(c, y(x)), quantifies the error introduced by some x. The
loss depends on a hypothesis y(x) and the true class, c, of x.

q For y(x) = wTx we define the following pointwise loss functions:

– 0/1 loss. l0/1(c, y(x)) = I6=(c, sign(y(x))) =

{
0 if c = sign(y(x))

1 otherwise
– Squared loss. l2(c, y(x)) = (c− y(x))2
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Loss Computation in Detail
Linear Regression (continued)

q The pointwise loss, l(c, y(x)), quantifies the error introduced by some x. The
loss depends on a hypothesis y(x) and the true class, c, of x.

q For y(x) = wTx we define the following pointwise loss functions:

– 0/1 loss. l0/1(c, y(x)) = I6=(c, sign(y(x))) =

{
0 if c = sign(y(x))

1 otherwise
– Squared loss. l2(c, y(x)) = (c− y(x))2

Illustration for a particular w:

Input space: y(x) over hyperplane distance: Loss over hyperplane distance:
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y(x) = wTx
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1

y(x)

0
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Loss Computation in Detail
Linear Regression (continued)

q The pointwise loss, l(c, y(x)), quantifies the error introduced by some x. The
loss depends on a hypothesis y(x) and the true class, c, of x.

q For y(x) = wTx we define the following pointwise loss functions:

– 0/1 loss. l0/1(c, y(x)) = I6=(c, sign(y(x))) =

{
0 if c = sign(y(x))

1 otherwise
– Squared loss. l2(c, y(x)) = (c− y(x))2

Illustration for a particular w:

Input space: y(x) over hyperplane distance: Loss over hyperplane distance:
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Loss Computation in Detail
Linear Regression (continued)

q The pointwise loss, l(c, y(x)), quantifies the error introduced by some x. The
loss depends on a hypothesis y(x) and the true class, c, of x.

q For y(x) = wTx we define the following pointwise loss functions:

– 0/1 loss. l0/1(c, y(x)) = I6=(c, sign(y(x))) =

{
0 if c = sign(y(x))

1 otherwise
– Squared loss. l2(c, y(x)) = (c− y(x))2

Illustration for a particular w:

Input space: y(x) over hyperplane distance: Loss over hyperplane distance:
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0/1 loss
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Loss Computation in Detail
Linear Regression (continued)

q The pointwise loss, l(c, y(x)), quantifies the error introduced by some x. The
loss depends on a hypothesis y(x) and the true class, c, of x.

q For y(x) = wTx we define the following pointwise loss functions:

– 0/1 loss. l0/1(c, y(x)) = I6=(c, sign(y(x))) =

{
0 if c = sign(y(x))

1 otherwise
– Squared loss. l2(c, y(x)) = (c− y(x))2

Illustration for a particular w:

Input space: y(x) over hyperplane distance: Loss over hyperplane distance:
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0/1 loss
Squared loss
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Loss Computation in Detail
Linear Regression (continued)

q The pointwise loss, l(c, y(x)), quantifies the error introduced by some x. The
loss depends on a hypothesis y(x) and the true class, c, of x.

q For y(x) = wTx we define the following pointwise loss functions:

– 0/1 loss. l0/1(c, y(x)) = I6=(c, sign(y(x))) =

{
0 if c = sign(y(x))

1 otherwise
– Squared loss. l2(c, y(x)) = (c− y(x))2

Illustration for a particular w:

Input space: y(x) over hyperplane distance: Loss over hyperplane distance:
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0

ML:III-56 Linear Models © STEIN 2022



Remarks:

q The 0/1 loss computes the misclassification error. Recall in this regard the definition of the

:::::
true

::::::::::::::::::::::
misclassification

:::::
rate.

q The pointwise squared loss computes the squared residual. The global squared loss,
L2(w) =

∑
(x,c)∈D l2(c, y(x)), hence computes the

::::::::::
residual

::::::
sum

:::
of

:::::::::::
squares (RSS) related to

some w.

q I6= is an indicator function that returns 1 if its arguments are unequal (and 0 if its arguments
are equal).

q
::::::::
Recap. We label y(0) with the “positive” class and define sign(0) = 1 here.

q Regarding the illustration: wTx is the hyperplane distance in relation to ||w||, the length of w.
By scaling w such that ||w|| = 1 the hyperplane distance wTx becomes normalized and is
also called

::::::::::::::
“geometric

:::::::::::::
distance”.
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Loss Computation in Detail
Logistic Regression

q The pointwise loss, l(c, y(x)), quantifies the error introduced by some x. The
loss depends on a hypothesis y(x) and the true class, c, of x.

q For y(x) = σ(wTx) = 1

1+e−wT x
we define the following pointwise loss functions:

– 0/1 loss. l0/1(c, y(x)) = I6=(c, sign(y(x)− 0.5)) [decision rule]

– Logistic loss. lσ(c, y(x)) =

{
− log(y(x)) if c = 1

− log(1− y(x)) if c = 0 [derivation]
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Loss Computation in Detail
Logistic Regression (continued)

q The pointwise loss, l(c, y(x)), quantifies the error introduced by some x. The
loss depends on a hypothesis y(x) and the true class, c, of x.

q For y(x) = σ(wTx) = 1

1+e−wT x
we define the following pointwise loss functions:

– 0/1 loss. l0/1(c, y(x)) = I6=(c, sign(y(x)− 0.5)) [decision rule]

– Logistic loss. lσ(c, y(x)) =

{
− log(y(x)) if c = 1

− log(1− y(x)) if c = 0 [derivation]
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Loss Computation in Detail
Logistic Regression (continued)

q The pointwise loss, l(c, y(x)), quantifies the error introduced by some x. The
loss depends on a hypothesis y(x) and the true class, c, of x.

q For y(x) = σ(wTx) = 1

1+e−wT x
we define the following pointwise loss functions:

– 0/1 loss. l0/1(c, y(x)) = I6=(c, sign(y(x)− 0.5)) [decision rule]

– Logistic loss. lσ(c, y(x)) =

{
− log(y(x)) if c = 1

− log(1− y(x)) if c = 0 [derivation]

Illustration for a particular w:

Input space: y(x) over hyperplane distance: Loss over hyperplane distance:
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Loss Computation in Detail
Logistic Regression (continued)

q The pointwise loss, l(c, y(x)), quantifies the error introduced by some x. The
loss depends on a hypothesis y(x) and the true class, c, of x.

q For y(x) = σ(wTx) = 1

1+e−wT x
we define the following pointwise loss functions:

– 0/1 loss. l0/1(c, y(x)) = I6=(c, sign(y(x)− 0.5)) [decision rule]

– Logistic loss. lσ(c, y(x)) =

{
− log(y(x)) if c = 1

− log(1− y(x)) if c = 0 [derivation]

Illustration for a particular w:

Input space: y(x) over hyperplane distance: Loss over hyperplane distance:

x2

x1

-

+
+
+

+
+

+

+

+

++ +

+
+

-

-

-
-
-

-

-
- -

-
-

+
w

+ +

wTx0 - --

++ +

---

+

-

1

y(x)

0.5

y(x) =
-wTx1 + e

1

wTx = 0

wTx = 1

wTx0

1

l(1, y(x))

wTx = 0

0/1 loss
Logistic loss
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Remarks:

q As before, the 0/1 loss computes the misclassification error.

q The pointwise logistic loss can be rewritten by combining the two cases algebraically:

lσ(c, y(x)) = −c · log(y(x))− (1− c) · log(1− y(x))

Lσ(w) =
∑

(x,c)∈D lσ(c, y(x)) computes the global logistic loss related to some w.

q Recall from the derivation of the logistic loss Lσ(w) that its minimization determines wML, the
most probable hypothesis in Rp+1 under the logistic regression model.

q Recap. I6= is an indicator function that returns 1 if its arguments are unequal (and 0 if its
arguments are equal).

q
::::::::
Recap. We label y(0) with the “positive” class and define sign(0) = 1 here.
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Remarks (different roles of loss functions) :

q Observe that loss functions are employed at two places (in two roles) in an optimization
approach:

1. For the fitting of the data (i.e., the parameter update during regression / optimization /
hyperplane search), where a new position of the hyperplane is computed.

Example: Lines 6+7 in the BGDσ Algorithm.

2. For the evaluation of a hypothesis’ effectiveness, where the proportion of correctly and
misclassified examples is analyzed.

Example: Line 10 in the BGDσ Algorithm.
General: section

:::::::::::::
Evaluating

::::::::::::::::::
Effectiveness of part Machine Learning Basics.

Typically, (1) fitting (optimization) and (2) effectiveness evaluation are done with different loss
functions. E.g., logistic regression uses Lσ and L0/1 for fitting and evaluation respectively.
However, linear regression (not classification) uses RSS (the L2 loss) for both fitting and
evaluation. The basic perceptron learning algorithm uses the misclassification information
(the L0/1 loss) for both fitting and evaluation.

ML:III-63 Linear Models © STEIN 2022

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-evaluating-effectiveness.pdf#true-misclassification-rate


Chapter ML:III (continued)

III. Linear Models
q Logistic Regression
q Loss Computation in Detail
q Overfitting
q Regularization
q Gradient Descent in Detail
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Overfitting

Definition 9 (Overfitting)

Let D be a multiset of examples and let H be a hypothesis space. The hypothesis
h ∈ H is considered to overfit D if an h′ ∈ H with the following property exists:

Err (h,D) < Err (h′, D) and Err ∗(h) > Err ∗(h′),

where Err ∗(h) denotes the
::::::
true

::::::::::::::::::::::::::
misclassification

:::::::
rate of h, while Err (h,D) denotes

the error of h for D.
[see continuation]
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Overfitting

Definition 9 (Overfitting)

Let D be a multiset of examples and let H be a hypothesis space. The hypothesis
h ∈ H is considered to overfit D if an h′ ∈ H with the following property exists:

Err (h,D) < Err (h′, D) and Err ∗(h) > Err ∗(h′),

where Err ∗(h) denotes the
::::::
true

::::::::::::::::::::::::::
misclassification

:::::::
rate of h, while Err (h,D) denotes

the error of h for D.
[see continuation]

E
rr

or

Increasing model function complexity
hh’

Error on D
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Overfitting

Definition 9 (Overfitting)

Let D be a multiset of examples and let H be a hypothesis space. The hypothesis
h ∈ H is considered to overfit D if an h′ ∈ H with the following property exists:

Err (h,D) < Err (h′, D) and Err ∗(h) > Err ∗(h′),

where Err ∗(h) denotes the
::::::
true

::::::::::::::::::::::::::
misclassification

:::::::
rate of h, while Err (h,D) denotes

the error of h for D.
[see continuation]

E
rr

or

Increasing model function complexity
hh’

Error on D

True error
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Overfitting

Definition 9 (Overfitting)

Let D be a multiset of examples and let H be a hypothesis space. The hypothesis
h ∈ H is considered to overfit D if an h′ ∈ H with the following property exists:

Err (h,D) < Err (h′, D) and Err ∗(h) > Err ∗(h′),

where Err ∗(h) denotes the
::::::
true

::::::::::::::::::::::::::
misclassification

:::::::
rate of h, while Err (h,D) denotes

the error of h for D.
[see continuation]

E
rr

or

Increasing model function complexity
hh’

Error on D

True error

Error on Dtr

Error on Dtest
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Overfitting

Definition 9 (Overfitting)

Let D be a multiset of examples and let H be a hypothesis space. The hypothesis
h ∈ H is considered to overfit D if an h′ ∈ H with the following property exists:

Err (h,D) < Err (h′, D) and Err ∗(h) > Err ∗(h′),

where Err ∗(h) denotes the
::::::
true

::::::::::::::::::::::::::
misclassification

:::::::
rate of h, while Err (h,D) denotes

the error of h for D.
[see continuation]

Reasons for overfitting are often rooted in the example set D :

q D is noisy and we “learn noise.”

q D is biased and hence not representative.

q D is too small and hence pretends unrealistic data properties.
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Overfitting
Example: Linear Regression

x
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Overfitting
Example: Linear Regression (continued)

x

(a) y(x) = w0 + w1 · x
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Overfitting
Example: Linear Regression (continued)

x

(b) y(x) = w0 + w1 · x + w2 · x2 (
:::::::
basis

::::::::::::::
expansion)

y(x) = (w0 w1 w2)

 1
x
x2

 =: wT

x0x1
x2

 = wTx = y(x), where x0 = 1, x1 = x, x2 = x2
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Overfitting
Example: Linear Regression (continued)

x

(c) y(x) = w0 +

6∑
j=1

wj · xj (
:::::::
basis

::::::::::::::
expansion)

y(x) =: wTx = y(x), where x0 = 1, xj = xj, j = 1, . . . , 6
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Overfitting
Example: Linear Regression (continued)

Given the three polynomial model functions of degrees 1, 2, and 6, and a training
set Dtr , select the function that best fits the data:

x

(a) RSS(w)� 0

x

(b) RSS(w) > 0

x

(c) RSS(w) > 0

Questions:

(1) How to choose a suited model function / hypothesis space H?

(2) How to parameterize a model function / pick an element from H?
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Overfitting
Example: Linear Regression (continued)

Given the three polynomial model functions of degrees 1, 2, and 6, and a training
set Dtr , select the function that best fits the data:

x

(a) RSS(w)� 0

x

(b) RSS(w) > 0

x

(c) RSS(w) = 0

Questions:

(1) How to choose a suited model function / hypothesis space H?

(2) How to parameterize a model function / pick an element from H?
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Overfitting
Example: Linear Regression (continued)

Given the three polynomial model functions of degrees 1, 2, and 6, and a training
set Dtr , select the function that best fits the data:

x

(a) RSS(w)� 0

x

(b) RSS(w) > 0

x

(c) RSS(w)� 0

Let Dtest be a set of test examples.

If D = Dtr ∪Dtest is representative of the real-world population in X, the quadratic
model function (b), y(x) = w0 + w1 · x + w2 · x2, is the closest match.
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Overfitting

Definition 9 (Overfitting (continued))

Let D be a set of examples and let H be a hypothesis space. The hypothesis h ∈ H
is considered to overfit D if an h′ ∈ H with the following property exists:

Err (h,D) < Err (h′, D) and Err ∗(h) > Err ∗(h′),

where Err ∗(h) denotes the
::::::
true

::::::::::::::::::::::::::
misclassification

:::::::
rate of h, while Err (h,D) denotes

the error of h for D.

Let Dtr ⊂ D be the training set. Then Err ∗(h) can be estimated with a test set
Dtest ⊂ D where Dtest ∩Dtr = ∅ [

::::::::
holdout

::::::::::::
estimation]. The hypothesis h ∈ H is considered

to overfit D if an h′ ∈ H with the following property exists:

Err tr (h) < Err tr (h
′) and Err (h,Dtest) > Err (h′, Dtest)

In particular holds: Err (h,Dtest)� Err tr (h)
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Overfitting
Mitigation Strategies

How to detect overfitting:

q Visual inspection
Apply projection or embedding for dimensionalities p > 3.

q Validation
Given a test set, the difference Err test(y,Dtest)− Err tr(y) is too large.
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Overfitting
Mitigation Strategies (continued)

How to detect overfitting:

q Visual inspection
Apply projection or embedding for dimensionalities p > 3.

q Validation
Given a test set, the difference Err test(y,Dtest)− Err tr(y) is too large.

How to address overfitting:

q Increase the quantity and / or the quality of the training data D.
Quantity: More data averages out noise.
Quality: Omitting “poor examples” allows a better fit, but is problematic though.

q Early stopping of the optimization (training) process.
Criterion: Err test(y,Dtest)− Err tr(y) increases with the number of iterations (training time).
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Overfitting
Mitigation Strategies (continued)

How to detect overfitting:

q Visual inspection
Apply projection or embedding for dimensionalities p > 3.

q Validation
Given a test set, the difference Err test(y,Dtest)− Err tr(y) is too large.

How to address overfitting:

q Increase the quantity and / or the quality of the training data D.
Quantity: More data averages out noise.
Quality: Omitting “poor examples” allows a better fit, but is problematic though.

q Early stopping of the optimization (training) process.
Criterion: Err test(y,Dtest)− Err tr(y) increases with the number of iterations (training time).

q Regularization: Increase model bias by constraining the hypothesis space.
(1) Model function: Consider functions of lower complexity / VC dimension. [Wikipedia]

(2) Hypothesis w: Bound the absolute values of the weights in ~w of a model function.
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Chapter ML:III (continued)

III. Linear Models
q Logistic Regression
q Loss Computation in Detail
q Overfitting
q Regularization
q Gradient Descent in Detail
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Regularization
Regularization in the Machine Learning Stack

Optimization approach

Optimization objective
Loss function [ + Regularization ]

Model function ; Hypothesis space

4

Task

Data

...

q Objective: minimize objective function
q Regularization: Euclidean norm,

absolute-value norm
q Loss: l(c, y(x))

...

...
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Regularization
Bound the Absolute Values of the Weights w

Principle: Add to the loss function (term) a regularization function (term), R(w):

L(w) = L(w) + λ ·R(w), l(w) = l(c, y(x)) +
λ

n
·R(w),

where λ ≥ 0 controls the impact of R(w), R(w) ≥ 0.
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Regularization
Bound the Absolute Values of the Weights w (continued)

Principle: Add to the loss function (term) a regularization function (term), R(w):

L(w) = L(w) + λ ·R(w), l(w) = l(c, y(x)) +
λ

n
·R(w),

where λ ≥ 0 controls the impact of R(w), R(w) ≥ 0.

Example (c) (continued) :

x

q y(x) = w0 +
6∑
j=1

wj · xj

q L(w) = RSS(w) =
n∑
i=1

(yi − y(xi))
2

q R(w) = |w1| + |w2| + . . . + |w6|
λ = 0

; ŵ = (−0.7, 15.4, −80.6, 174.9, −99.5, −113.7, 109.7)T
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Regularization
Bound the Absolute Values of the Weights w (continued)

Principle: Add to the loss function (term) a regularization function (term), R(w):

L(w) = L(w) + λ ·R(w), l(w) = l(c, y(x)) +
λ

n
·R(w),

where λ ≥ 0 controls the impact of R(w), R(w) ≥ 0.

Example (c) (continued) :

x

q y(x) = w0 +
6∑
j=1

wj · xj

q L(w) = RSS(w) =
n∑
i=1

(yi − y(xi))
2

q R(w) = |w1| + |w2| + . . . + |w6|
λ = 0.001

; ŵ = (0.01, 2.0, −1.73, −0.22, 0.0, 0.0, 0.8)T
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Regularization
Bound the Absolute Values of the Weights w (continued)

Principle: Add to the loss function (term) a regularization function (term), R(w):

L(w) = L(w) + λ ·R(w), l(w) = l(c, y(x)) +
λ

n
·R(w),

where λ ≥ 0 controls the impact of R(w), R(w) ≥ 0.

Example (c) (continued) :

x

q y(x) = w0 +
6∑
j=1

wj · xj

q L(w) = RSS(w) =
n∑
i=1

(yi − y(xi))
2

q R(w) = |w1| + |w2| + . . . + |w6|
λ = 0.02

; ŵ = (0.17, 0.73, 0.0, −0.21, −0.01, −0.01, 0.0)T
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Regularization
Bound the Absolute Values of the Weights w (continued)

Principle: Add to the loss function (term) a regularization function (term), R(w):

L(w) = L(w) + λ ·R(w), l(w) = l(c, y(x)) +
λ

n
·R(w),

where λ ≥ 0 controls the impact of R(w), R(w) ≥ 0.

Observations:

q Model complexity depends (also) on the magnitude of the weights w.

q Minimizing L(w) sets no bounds on the weights w.

q Regularization is achieved with a “counterweight” λ ·R(w) that grows with w.

q Aside from λ no additional hyperparameter is introduced.
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Remarks:

q L(w) is called (global) “objective function”, “cost function”, or “error function”; l(w) is the
pointwise counterpart.

q The regularization term constrains the magnitude of the direction vector of the hyperplane,
progressively reducing the hyperplane’s steepness as λ increases. The intercept w0 is
adjusted accordingly through minimization of L(w) but must not be part of the regularization
term itself, which would lead to an incorrect solution.

q To denote the difference, we write w ≡ (w0, w1, . . . , wp)
T to refer to the entire parameter vector

(the actual hypothesis), and ~w ≡ (w1, . . . , wp)
T for the direction vector excluding w0.

q About choosing λ:

– “No black-box procedures for choosing the regularization parameter λ are available, and
most likely will never exist.” [Hansen/Hanke 1993]

– How to calculate the regularization parameter λ in linear regression. [stackoverflow]
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Remarks (continued) :

q The term “regularization” derives from “regular”, a synonym for “smooth” within the context of
model functions. [stackexchange]

q Regularization is applied in settings where the set of examples D is much smaller than the
population of real-world objects O. Under the conditions of the

:::::::::::
Inductive

::::::::::::
Learning

:::::::::::::::
Hypothesis

we can infer from D a hypothesis h that generalizes sufficiently well to the entire
population—if h is sufficiently simple, stable (wrt. changes in D), and smooth, which can be
reached with regularization.

However, if D covers (nearly) the entire population, minimizing the loss L(w) takes
precedence over additional restrictions R(w) regarding the simplicity, the stability, and the
smoothness of h.

q The origins of regularization go back to the fields of inverse problems and ill-posed problems.
Solving an inverse problem means calculating from a set of observations the causal factors
that produced them. [Wikipedia]

Inverse problems are often ill-posed, where “ill-posedness” is defined as not being
“well-posed”. In turn, a mathematical problem is called well-posed if (1) a solution exists,
(2) the solution is unique, (3) the solution’s behavior changes continuously with the initial
conditions. [Wikipedia]

Under certain assumptions the problem of learning from examples forms an inverse problem.
[deVito 2005]
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Regularization
The Vector Norm as Regularization Function

q Ridge regression. R||~w||22
(w) =

p∑
i=1

w2
i = ~wT ~w

q Lasso regression. R||~w||1(w) =

p∑
i=1

|wi|

ML:III-91 Linear Models © POTTHAST/STEIN/VÖLSKE 2022



Remarks:

q Ridge regression predates lasso regression. It is also known as weight decay in machine
learning, and with multiple independent discoveries, it is variously known as the
Tikhonov-Miller method, the Phillips-Twomey method, the constrained linear inversion
method, and the method of linear regularization. [Wikipedia]

q “Lasso” is an acronym for “least absolute shrinkage and selection operator”.

“Ridge” is a metaphor describing plains, shaped like a chain of hills, the highest point of
which is not easily to recognize.

q || · ||k denotes the vector norm operator:

||x||k ≡

(
p∑
j=1

|xj|k
)1/k

,

where k ∈ [1,∞) and p is the dimensionality of vector x.

q By convention, || · || (omitting the subscript) refers to the Euclidean norm (k = 2).
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Regularization
The Vector Norm as Regularization Function (continued)

L(w) = L(w)
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Regularization
The Vector Norm as Regularization Function (continued)

R||~w||22
(w) =

p∑
i=1

w2
i = ~wT ~w

w1

w2

0

0

0

w1

w2
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Regularization
The Vector Norm as Regularization Function (continued)

R||~w||1(w) =

p∑
i=1

|wi|

w1

w2

0

0

0

w1

w2
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Remarks:

q The exemplified plots of the loss term, L(w), and the regularization term, R(w), are illustrated
over the parameter space {(w1, w2) | wi ∈ R} (instead of {(w0, w1) | wi ∈ R}) to better
emphasize the characteristic difference between ridge regression and lasso regression.

q The contour line plots show two-dimensional projections of the three-dimensional convex loss
function (here: RSS) for a given set of example data, as well as of the two regularization
functions R||w||22 and R||w||1, whose shapes do not depend on the data.

q A contour line is a curve along which the respective function has a constant value.
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Regularization
The Vector Norm as Regularization Function (continued)

L(w) = L(w)

w1

w2
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Regularization
The Vector Norm as Regularization Function (continued)

L(w) = L(w) + λ ·R||~w||22(w)

w1

w2

λ = 10
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Regularization
The Vector Norm as Regularization Function (continued)

L(w) = L(w) + λ ·R||~w||22(w)

w1

w2

λ = 10
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Regularization
The Vector Norm as Regularization Function (continued)

L(w) = L(w) + λ ·R||~w||22(w)

w1

w2

λ = 100

ML:III-100 Linear Models © POTTHAST/STEIN/VÖLSKE 2022



Regularization
The Vector Norm as Regularization Function (continued)

L(w) = L(w) + λ ·R||~w||22(w)

w1

w2

λ = 100
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Regularization
The Vector Norm as Regularization Function (continued)

L(w) = L(w) + λ ·R||~w||22(w) L(w) = L(w) + λ ·R||~w||1(w)

w1

w2

λ = 100

w1

w2

λ = 10
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Regularization
The Vector Norm as Regularization Function (continued)

L(w) = L(w) + λ ·R||~w||22(w) L(w) = L(w) + λ ·R||~w||1(w)

w1

w2

λ = 100

w1

w2

λ = 10
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Regularization
The Vector Norm as Regularization Function (continued)

L(w) = L(w) + λ ·R||~w||22(w) L(w) = L(w) + λ ·R||~w||1(w)

w1

w2

λ = 100

w1

w2

λ = 100

ML:III-104 Linear Models © POTTHAST/STEIN/VÖLSKE 2022



Regularization
The Vector Norm as Regularization Function (continued)

L(w) = L(w) + λ ·R||~w||22(w) L(w) = L(w) + λ ·R||~w||1(w)

w1

w2

λ = 100

w1

w2

λ = 100
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Regularization
The Vector Norm as Regularization Function (continued)

L(w) = L(w) + λ ·R||~w||22(w) L(w) = L(w) + λ ·R||~w||1(w)

[animation] [animation]

The animations show superimposed contourlines. The choice of R determines the
trajectory the minimum takes towards the origin as a function of λ. [stackexchange]
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Remarks:

q The exemplified loss function is minimal at the cross. Without regularization, the weights
associated with the minimum will be the result of a linear regression. By adding the
regularization term λ ·R(w) with λ > 0, the joint minimum of the two functions is found closer
to the origin of the parameter space than the minimum of the loss function.

q The choice of λ determines how much closer the joint minimum is to the origin of the
parameter space; the higher, the closer, and thus the smaller the parameters w.

q The minimum of L(w) is on a tangent point between a contour line of L(w) and a contour line
of R(w). Barring exceptional cases, the minimum of L(w) (the sum of global loss and
regularization) is unique, even if the minimum of L(w) (the global loss) is non-unique.

q A key difference between ridge (R||~w||22) and lasso (R||~w||1) regression is that, with lasso
regression, parameters can be reduced to zero, eliminating the corresponding feature from
the model function.

With ridge regression, the influence of all parameters will be reduced “uniformly.” In particular,
a parameter will be reduced to zero if and only if the minimum of the loss function is found on
that parameter’s axis.
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Regularization
Regularized Linear Regression [

::::::
linear

::::::::::::
regression]

q Given x, predict a real-valued output under a linear model function:

y(x) = w0 +

p∑
j=1

wj · xj

q Vector notation with x0 = 1 and w = (w0, w1, . . . , wp)
T :

y(x) = wTx
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Regularization
Regularized Linear Regression (continued) [

::::::
linear

::::::::::::
regression]

q Given x, predict a real-valued output under a linear model function:

y(x) = w0 +

p∑
j=1

wj · xj

q Vector notation with x0 = 1 and w = (w0, w1, . . . , wp)
T :

y(x) = wTx

q Given x1, . . . ,xn, assess goodness of fit of the objective function:

(1)L(w) = RSS(w) + λ ·R||~w||22(w) =

n∑
i=1

(yi −wTxi)
2 + λ · ~wT ~w
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Regularization
Regularized Linear Regression (continued) [

::::::
linear

::::::::::::
regression]

q Given x, predict a real-valued output under a linear model function:

y(x) = w0 +

p∑
j=1

wj · xj

q Vector notation with x0 = 1 and w = (w0, w1, . . . , wp)
T :

y(x) = wTx

q Given x1, . . . ,xn, assess goodness of fit of the objective function:

(1)L(w) = RSS(w) + λ ·R||~w||22(w) =

n∑
i=1

(yi −wTxi)
2 + λ · ~wT ~w

q Estimate optimum w by minimizing the residual sum of squares:

(2)ŵ = argmin
w∈Rp+1

L(w)
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Regularization
Regularized Linear Regression (continued) [

::::::
linear

::::::::::::
regression]

q Let X denote the n× (p+1) matrix, where row i is (1 xTi ) with (xi, yi) ∈ D.

Let y denote the n-vector of outputs in the training set D.

; L(w) = (y −Xw)T (y −Xw) + λ · ~wT ~w
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Regularization
Regularized Linear Regression (continued) [

::::::
linear

::::::::::::
regression]

q Let X denote the n× (p+1) matrix, where row i is (1 xTi ) with (xi, yi) ∈ D.

Let y denote the n-vector of outputs in the training set D.

; L(w) = (y −Xw)T (y −Xw) + λ · ~wT ~w

q Minimize L(w) via a direct method:

∂L(w)

∂w
= −2XT (y −Xw) + 2λ ·

(
0
~w

)
= 0

XT (y −Xw)− λ ·
(

0
~w

)
= 0

⇔
(
XTX + λ · diag(0, 1, . . . , 1)

)
w = XTy Normal equations.

⇔ ŵ ≡ w =
(
XTX + diag(0, λ, . . . , λ)︸ ︷︷ ︸

Conditioning the moment matrix XTX [Wikipedia 1, 2, 3]

)−1
XTyIf λ > 0.
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Regularization
Regularized Linear Regression (continued) [

::::::
linear

::::::::::::
regression]

q Let X denote the n× (p+1) matrix, where row i is (1 xTi ) with (xi, yi) ∈ D.

Let y denote the n-vector of outputs in the training set D.

; L(w) = (y −Xw)T (y −Xw) + λ · ~wT ~w

q Minimize L(w) via a direct method:

∂L(w)

∂w
= −2XT (y −Xw) + 2λ ·

(
0
~w

)
= 0

XT (y −Xw)− λ ·
(

0
~w

)
= 0

⇔
(
XTX + λ · diag(0, 1, . . . , 1)

)
w = XTy Normal equations.

⇔ ŵ ≡ w =
(
XTX + diag(0, λ, . . . , λ)︸ ︷︷ ︸

Conditioning the moment matrix XTX [Wikipedia 1, 2, 3]

)−1
XTyIf λ > 0.
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Regularization
Regularized Linear Regression (continued) [

::::::
linear

::::::::::::
regression]

q Let X denote the n× (p+1) matrix, where row i is (1 xTi ) with (xi, yi) ∈ D.

Let y denote the n-vector of outputs in the training set D.

; L(w) = (y −Xw)T (y −Xw) + λ · ~wT ~w

q Minimize L(w) via a direct method:

∂L(w)

∂w
= −2XT (y −Xw) + 2λ ·

(
0
~w

)
= 0

XT (y −Xw)− λ ·
(

0
~w

)
= 0

⇔
(
XTX + λ · diag(0, 1, . . . , 1)

)
w = XTy Normal equations.

⇔ ŵ ≡ w =
(
XTX + diag(0, λ, . . . , λ)︸ ︷︷ ︸

Conditioning the moment matrix XTX [Wikipedia 1, 2, 3]

)−1
XTyIf λ > 0.

ŷ(xi) = ŵT xi Regression function with least squares estimator ŵ.
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Chapter ML:III (continued)

III. Linear Models
q Logistic Regression
q Loss Computation in Detail
q Overfitting
q Regularization
q Gradient Descent in Detail
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Gradient Descent in Detail
Principle

Gradient descent, GD, is a first-order iterative optimization algorithm for finding a
local extremum of a differentiable function f . [Wikipedia]

In our algorithms, f is the
:::::::::
global

:::::::
loss

:::::::::::::
function, L, or some

:::::::::::::
objective

:::::::::::::
function, L.

w0

w1

L 2
(w

)
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Gradient Descent in Detail
Principle (continued)

Gradient descent, GD, is a first-order iterative optimization algorithm for finding a
local extremum of a differentiable function f . [Wikipedia]

In our algorithms, f is the
:::::::::
global

:::::::
loss

:::::::::::::
function, L, or some

:::::::::::::
objective

:::::::::::::
function, L.

w0

w1

L 2
(w

)
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Gradient Descent in Detail
Principle (continued)

Gradient descent, GD, is a first-order iterative optimization algorithm for finding a
local extremum of a differentiable function f . [Wikipedia]

In our algorithms, f is the
:::::::::
global

:::::::
loss

:::::::::::::
function, L, or some

:::::::::::::
objective

:::::::::::::
function, L.

w0

w1

L 2
(w

)
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Gradient Descent in Detail
Principle (continued)

Gradient descent, GD, is a first-order iterative optimization algorithm for finding a
local extremum of a differentiable function f . [Wikipedia]

In our algorithms, f is the
:::::::::
global

:::::::
loss

:::::::::::::
function, L, or some

:::::::::::::
objective

:::::::::::::
function, L.

t0t1t2

Iteration of algorithm

q The gradient ∇f of a differentiable function f of several variables is a vector
whose components are the partial derivatives of f . (simplified definition)

q The gradient of a function is the direction of steepest ascent or descent.

q Gradient ascent means stepping in the direction of the gradient.

q Likewise, gradient descent means stepping in the opposite direction of the
gradient; it will lead to a local minimum of that function.
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Remarks:

q In machine learning the GD principle is applied to take the direction of steepest descent for
various loss and objective functions. In this section we will discuss gradient descent in the
following hypothesis search settings:

(1) linear regression + squared loss

(2) linear regression + 0/1 loss

(3) logistic regression + logistic loss + regularization

In section
::::::::::::
Multilayer

:::::::::::::::
Perceptron of part Neural Networks the GD principle is applied in the

form of the backpropagation mechanism to tackle search settings with unconstrained
hypotheses forms:

(4) multilayer perceptron with single hidden layer and k-dimensional output + squared loss

(5) multilayer perceptron with d hidden layers and k-dimensional output + squared loss

q Recall that by the method of steepest (= gradient) descent the determination of the global
optimum can be guaranteed for convex functions only.

The (loss or objective) functions considered in the settings (1) and (3) are convex; the (loss or
objective) functions considered in the settings (2), (4), and (5) are typically non-convex.
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Gradient Descent in Detail
(1) Linear Regression + Squared Loss
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y(x)
(?)
= wTx
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Gradient Descent in Detail
(1) Linear Regression + Squared Loss (continued)
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Basis of loss computation

y(x)
(?)
= wTx

L2(w) =
1

2
·RSS(w) =

1

2
·
∑

(x,c)∈D

(c− y(x))2 [pointwise squared loss]

ML:III-122 Linear Models © STEIN/VÖLSKE 2022



Gradient Descent in Detail
(1) Linear Regression + Squared Loss (continued)
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Gradient Descent in Detail
(1) Linear Regression + Squared Loss (continued)
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(c− y(x))2 [pointwise squared loss]
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Gradient Descent in Detail
(1) Linear Regression + Squared Loss (continued)
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·RSS(w) =

1

2
·
∑
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(c− y(x))2 [pointwise squared loss]

∇L2(w) =

(
∂L2(w)

∂w0
,
∂L2(w)

∂w1
, · · · , ∂L2(w)

∂wp

)T
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Gradient Descent in Detail
(1) Linear Regression + Squared Loss (continued)

Update of weight vector w: (BGD algorithm, Line 9)

w = w + ∆w,

using the gradient of the loss function L2(w) to take steepest descent:

∆w = −η · ∇L2(w)
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Gradient Descent in Detail
(1) Linear Regression + Squared Loss (continued)

Update of weight vector w: (BGD algorithm, Line 9)

w = w + ∆w,

using the gradient of the loss function L2(w) to take steepest descent:

∆w = −η · ∇L2(w)

= −η ·
(
∂L2(w)

∂w0
,
∂L2(w)

∂w1
, · · · , ∂L2(w)

∂wp

)T
...

= η ·
∑

(x,c)∈D

(c−wTx) · x
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Remarks (derivation of ∇L2(w)) :

q Consider the partial derivative for a parameter wj, j = 0, . . . , p :

∂

∂wj
L2(w) =

∂

∂wj

1

2
·
∑

(x,c)∈D

(c− y(x))2

=
1

2
·
∑

(x,c)∈D

∂

∂wj
(c− y(x))2

(1)
=

∑
(x,c)∈D

(c− y(x)) · ∂

∂wj
(c− y(x))

=
∑

(x,c)∈D

(c−wTx) · ∂

∂wj
(c−wTx) // j-th summand depends on wj.

=
∑

(x,c)∈D

(c−wTx) · (−xj)

= −
∑

(x,c)∈D

(c−wTx) · xj

q Plugging the results for ∂
∂wj

L2(w) into −η · (. . .)T yields the update formula for ∆w.

q Hints:

(1) Chain rule with d
dz(g(z))2 = 2 · g(z) · ddzg(z)
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Gradient Descent in Detail
The BGD Algorithm [algorithms:

:::::
LMS

:::::::
BGDσ

:::
PT BGD IGD ]

Algorithm: BGD Batch Gradient Descent
Input: D Multiset of examples (x, c) with x ∈ Rp, c ∈ {−1, 1}.

η Learning rate, a small positive constant.
Output: w Weight vector from Rp+1. (= hypothesis)

BGD(D, η)

1. initialize_random_weights(w), t = 0

2. REPEAT

3. t = t+ 1, ∆w = 0

4. FOREACH (x, c) ∈ D DO

5. y(x)
(?)
= wTx

6. δ = c− y(x)

7. ∆w
(?)
= ∆w + η · δ · x // −δ · x is the derivative of l2(c, y(x)) wrt.w.

8. ENDDO

9. w = w + ∆w // ∆w = −η · ∇L2(w)

10. UNTIL(convergence(D, y( · ), t))
11. return(w)
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Gradient Descent in Detail
The BGD Algorithm [algorithms:

:::::
LMS

:::::::
BGDσ

:::
PT BGD IGD ]

Algorithm: BGD Batch Gradient Descent
Input: D Multiset of examples (x, c) with x ∈ Rp, c ∈ {−1, 1}.

η Learning rate, a small positive constant.
Output: w Weight vector from Rp+1. (= hypothesis)

BGD(D, η)

1. initialize_random_weights(w), t = 0

2. REPEAT

3. t = t+ 1, ∆w = 0

4. FOREACH (x, c) ∈ D DO

5. y(x)
(?)
= wTx

6. δ = c− y(x)

7. ∆w
(?)
= ∆w + η · δ · x // −δ · x is the derivative of l2(c, y(x)) wrt.w.

8. ENDDO

9. w = w + ∆w // ∆w = −η · ∇L2(w)

10. UNTIL(convergence(D, y( · ), t))
11. return(w)

Model function evaluation.

Calculation of residual.

Calculation of derivative, accumulate for entire D.

Parameter vector update = one gradient step down.
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Remarks:

(?)
:::::::::
Recap. We consider the feature vector x in its extended form when used as operand in a
scalar product with the weight vector, wTx, and consequently, when noted as argument of the
model function, y(x). I.e., x = (1, x1, . . . , xp)

T ∈ Rp+1, and x0 = 1.

q
::::::::
Recap. Each BGD iteration “REPEAT . . .UNTIL”

1. computes the direction of steepest loss descent as −∇L2(wt) =
∑

(x,c)∈D (c− yt(x)) · x,
and

2. updates wt by taking a step of length η in this direction.

q
::::::::
Recap. The function convergence( · ) can analyze the global squared loss, L2(wt), or the
norm of the loss gradient, ||∇L2(wt)||, and compare it to a small positive bound ε. Consider in
this regard the vectors of observed and computed classes, D|c and y(D|x) respectively. In
addition, the function may check via t an upper bound on the number of iterations.
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Remarks: (continued)

q The basic gradient descent is a first-order optimization method, and its speed of convergence
may be considered unsatisfactory. Even when taking the optimal step size η at each iteration,
it has only a linear rate of convergence. [Meza 2010]

More advanced numerical algorithms to tackle the optimization (search for minimum L2) are
listed below but are not treated in detail here:

– Newton-Raphson algorithm

– BFGS algorithm (Broyden-Fletcher-Goldfarb-Shanno)

– L-BFGS algorithm (limited memory BFGS)

– conjugate gradient method
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Gradient Descent in Detail
Global Loss versus Pointwise Loss

The weight adaptation of the BGD algorithm computes in each iteration the global
loss, i.e., the loss of all examples in D (“batch gradient descent”).

The (squared) loss with regard to a single example (x, c) ∈ D, also called
:::::::::::::::
pointwise

::::::
loss is given as:

l2(c, y(x)) =
1

2
(c−wTx)2 [global squared loss]

The respective weight adaptation computes canonically as follows:

∆w = η · (c−wTx) · x [IGD algorithm]
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Remarks:

q The adaptation rule for single example, ∆w = η · (c−wTx) · x, is known under different
names:

– delta rule
– Widrow-Hoff rule
– adaline rule
– least mean squares (LMS) rule

q The delta rule gives rise to the IGD algorithm (incremental gradient descent), which is
introduced in the following. Moreover, the delta rule forms the basis of the backpropagation
algorithm.
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Gradient Descent in Detail
The IGD Algorithm [algorithms:

:::::
LMS

:::::::
BGDσ

:::
PT BGD IGD ]

Algorithm: IGD Incremental Gradient Descent
Input: D Multiset of examples (x, c) with x ∈ Rp, c ∈ {−1, 1}.

η Learning rate, a small positive constant.
Output: w Weight vector from Rp+1. (= hypothesis)

IGD(D, η)

1. initialize_random_weights(w), t = 0

2. REPEAT

3. t = t+ 1

4. FOREACH (x, c) ∈ D DO

5. y(x)
(?)
= wTx

6. δ = c− y(x)

7. ∆w
(?)
= η · δ · x // −δ · x is the derivative of l2(c, y(x)) wrt.w.

8. w = w + ∆w

9. ENDDO

10. UNTIL(convergence(D, y( · ), t))
11. return(w)
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Gradient Descent in Detail
The IGD Algorithm [algorithms:

:::::
LMS

:::::::
BGDσ

:::
PT BGD IGD ]

Algorithm: IGD Incremental Gradient Descent
Input: D Multiset of examples (x, c) with x ∈ Rp, c ∈ {−1, 1}.

η Learning rate, a small positive constant.
Output: w Weight vector from Rp+1. (= hypothesis)

IGD(D, η)

1. initialize_random_weights(w), t = 0

2. REPEAT

3. t = t+ 1

4. FOREACH (x, c) ∈ D DO

5. y(x)
(?)
= wTx

6. δ = c− y(x)

7. ∆w
(?)
= η · δ · x // −δ · x is the derivative of l2(c, y(x)) wrt.w.

8. w = w + ∆w

9. ENDDO

10. UNTIL(convergence(D, y( · ), t))
11. return(w)

Model function evaluation.

Calculation of residual.

Calculation of derivative.

Parameter vector update = one gradient step down.
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Remarks (IGD) :

q The sequence of incremental weight adaptations approximates the gradient descent of the
batch approach. If η is chosen sufficiently small this approximation can be done at arbitrary
precision.

q The computation of the global loss, L2(w), of batch gradient descent enables larger weight
adaptation steps.

q Compared to batch gradient descent, the example-based weight adaptation of incremental
gradient descent can better avoid getting stuck in a local minimum of the loss function.

q When, as is done here, the residual sum of squares, RSS, is chosen as loss function, the
incremental gradient descent algorithm is very similar to the

::::::
LMS

::::::::::::
algorithm.

q A related method to incremental gradient descent is stochastic gradient descent, SGD, which
estimates the gradient from a randomly selected subset of the data.
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Remarks (
::::::::
recap. different roles of loss functions) :

q Observe that loss functions are employed at two places (in two roles) in an optimization
approach:

1. For the fitting of the data (i.e., the parameter update during regression / optimization /
hyperplane search), where a new position of the hyperplane is computed.

Example: Lines 6+7 in the BGD Algorithm and the IGD Algorithm.

2. For the evaluation of a hypothesis’ effectiveness, where the portion of correctly and
misclassified examples is analyzed.

Example: Line 10 in the BGD Algorithm and the IGD Algorithm.
General: section

:::::::::::::
Evaluating

::::::::::::::::::
Effectiveness of part Machine Learning Basics.

Typically, fitting (optimization) (1.) and effectiveness evaluation (2.) are done with different
loss functions. E.g., logistic regression uses Lσ and L0/1 for fitting and evaluation respectively.
However, linear regression (not classification) uses RSS (the L2 loss) for both fitting and
evaluation. The basic perceptron learning algorithm uses the misclassification information
(the L0/1 loss) for both fitting and evaluation.
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Gradient Descent in Detail
(2) Linear Regression + 0/1 Loss
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Gradient Descent in Detail
(2) Linear Regression + 0/1 Loss (continued)
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Basis of loss computation

y(x)
(?)
= wTx

L0/1(w) =
∑

(x,c)∈D

I6=(c, sign(y(x))) =
∑

(x,c)∈D

1

2
· (c− sign(wTx)) [

::::::::::
pointwise

::::
0/1

:::::
loss]
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Gradient Descent in Detail
(2) Linear Regression + 0/1 Loss (continued)
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(?)
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L0/1(w) =
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(x,c)∈D

I6=(c, sign(y(x))) =
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(x,c)∈D

1

2
· (c− sign(wTx)) [

::::::::::
pointwise

::::
0/1

:::::
loss]
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Gradient Descent in Detail
(2) Linear Regression + 0/1 Loss (continued)
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(x,c)∈D

I6=(c, sign(y(x))) =
∑

(x,c)∈D

1

2
· (c− sign(wTx)) [

::::::::::
pointwise

::::
0/1

:::::
loss]

∇L0/1(w) cannot be expressed as a differentiable function.
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Remarks:

q Since ∇L0/1(w) is not a differentiable function the gradient descent method cannot be applied
to determine its minimum.

q Recap. I6= is an indicator function that returns 1 if its arguments are unequal (and 0 if its
arguments are equal).

q Recap. We label y(0) with the “positive” class and define sign(0) = 1 here.
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Gradient Descent in Detail
(3) Logistic Regression + Logistic Loss + Regularization
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Gradient Descent in Detail
(3) Logistic Regression + Logistic Loss + Regularization (continued)
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Lσ(w) = Lσ + λ·R‖~w‖22 =
∑

(x,c)∈D

lσ(c, y(x)) + λ·~wT ~w [definitions:
::
Lσ,

::
lσ,

::::::
R‖~w‖22 ]

=
∑

(x,c)∈D

−c · log(y(x))− (1− c) · log(1− y(x)) + λ·~wT ~w
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Gradient Descent in Detail
(3) Logistic Regression + Logistic Loss + Regularization (continued)
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∑
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lσ(c, y(x)) + λ·~wT ~w [definitions:
::
Lσ,

::
lσ,

::::::
R‖~w‖22 ]

=
∑

(x,c)∈D

−c · log(y(x))− (1− c) · log(1− y(x)) + λ·~wT ~w
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Gradient Descent in Detail
(3) Logistic Regression + Logistic Loss + Regularization (continued)
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::
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::
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::::::
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=
∑

(x,c)∈D

−c · log(y(x))− (1− c) · log(1− y(x)) + λ·~wT ~w
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Gradient Descent in Detail
(3) Logistic Regression + Logistic Loss + Regularization (continued)
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∑

(x,c)∈D

lσ(c, y(x)) + λ·~wT ~w [definitions:
::
Lσ,

::
lσ,

::::::
R‖~w‖22 ]

∇Lσ(w) =

(
∂Lσ(w)

∂w0
,
∂Lσ(w)

∂w1
, · · · , ∂Lσ(w)

∂wp

)T
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Gradient Descent in Detail
(3) Logistic Regression + Logistic Loss + Regularization (continued)

Update of weight vector w: (
::::::::
BGDσ

::::::::::::
algorithm, Line 9)

w = w + ∆w,

using the gradient of the objective function Lσ(w) to take steepest descent:

∆w = −η · ∇Lσ(w)
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Gradient Descent in Detail
(3) Logistic Regression + Logistic Loss + Regularization (continued)

Update of weight vector w: (
::::::::
BGDσ

::::::::::::
algorithm, Line 9)

w = w + ∆w,

using the gradient of the objective function Lσ(w) to take steepest descent:

∆w = −η · ∇Lσ(w)

= −η ·
(
∂Lσ(w)

∂w0
,
∂Lσ(w)

∂w1
, · · · , ∂Lσ(w)

∂wp

)T
...

= η ·
∑

(x,c)∈D

(c− σ(wTx)) · x − η · 2λ ·
(

0
~w

)
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Remarks:

q
::::::::
Recap. Distinguish between the p-dimensional direction vector ~w = (w1, . . . , wp)

T , and the
(p+1)-dimensional hypothesis w = (w0, w1, . . . , wp)

T .

q The BGD variant BGDσ has already been introduced in section Logistic Regression of part
Linear Models. However, none of the algorithms presented so far consider the update term
η · 2λ ·

(
0
~w

)
for the ridge regression regularization constraint, λ · ~wT ~w, which has been derived

now and which may be added to the respective algorithms as follows:

[
:::::::
BGDσ, BGD] Line 9: w = w + ∆w − η · 2λ ·

(
0
~w

)
[IGD] Line 8: w = w + ∆w − η · 2 λ

|D| ·
(
0
~w

)
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Remarks (derivation of ∇Lσ(w)) :

q Consider the partial derivative for a parameter wj, j = 0, . . . , p :

∂

∂wj
Lσ(w) =

∂

∂wj
Lσ(w) +

∂

∂wj
λ ·R‖~w‖22(w)

=
∑

(x,c)∈D

∂

∂wj
lσ(c, y(x)) + λ · ∂

∂wj
~wT ~w

=
∑

(x,c)∈D

∂

∂wj

[
−c · log(σ(wTx))− (1− c) · log(1− σ(wTx))

]
+ λ · ∂

∂wj

p∑
i=1

w2
i

=
∑

(x,c)∈D

[
−c · ∂

∂wj
log(σ(wTx))− (1− c) · ∂

∂wj
log(1− σ(wTx))

]
(1)
+ λ · ∂

∂wj
w2
j

(2)
=

∑
(x,c)∈D

[
−c · 1

σ(wTx)
· ∂

∂wj
σ(wTx)

− (1− c) · 1

1− σ(wTx)
·
(
− ∂

∂wj
σ(wTx)

)]
(1)
+ 2λ · wj

= ↪→ p. 153
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Remarks (derivation of ∇Lσ(w)) : (continued)

(3)
=

∑
(x,c)∈D

[
−c · 1

σ(wTx)
· σ(wTx) · (1− σ(wTx)) · ∂

∂wj
wTx

− (1− c) · 1

1− σ(wTx)
· (−1) · σ(wTx) · (1− σ(wTx)) · ∂

∂wj
wTx

]
(1)
+ 2λ · wj

=
∑

(x,c)∈D

−c · (1− σ(wTx)) · xj + (1− c) · σ(wTx) · xj
(1)
+ 2λ · wj

= −
∑

(x,c)∈D

(c− σ(wTx)) · xj
(1)
+ 2λ · wj

q Plugging the results for ∂
∂wj
Lσ(w) into −η · (. . .)T yields the update formula for ∆w.

q Hints:

(1) Since ~w ≡ (w1, . . . , wp)
T the right summand is defined as 0 for wj = w0.

(2) Chain rule with d
dz log(z) = 1

z

(3) Chain rule with d
dzσ(z) = σ(z) · (1− σ(z)), where σ(z) = 1

1+e−z
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