
Chapter ML:II (continued)

II. Machine Learning Basics
q Concept Learning: Search in Hypothesis Space
q Concept Learning: Version Space
q From Regression to Classification
q Evaluating Effectiveness
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Concept Learning: Search in Hypothesis Space
Simple Classification Problems

Setting:

q X is a multiset of feature vectors.

q C = {no, yes} is a set of two classes.
Similarly: {0, 1}, {−1, 1}, {	,⊕}, “belongs to a concept or not”, etc.

q D = {(x1, c1), . . . , (xn, cn)} ⊆ X × C is a multiset of examples.

Learning task:

q Approximate D with a feature-value pattern.

ML:II-2 Machine Learning Basics © STEIN 2021



Concept Learning: Search in Hypothesis Space
Example Learning Task

X contains vectors encoding weather in the six dimensions “Sky”, “Temperature”,
“Humidity”, “Wind”, “Water”, and “Forecast”. D contains examples of weather
conditions x ∈ X along with a statement whether or not our friend will enjoy her
favorite sport (surfing):

Example Sky Temperature Humidity Wind Water Forecast EnjoySport

1 sunny warm normal strong warm same yes 1
2 sunny warm high strong warm same yes 1
3 rainy cold high strong warm change no 0
4 sunny warm high strong cool change yes 1

q What is the concept behind “EnjoySport” ?

q What are possible hypotheses to formalize the concept “EnjoySport” ?

Similarly: What are the elements of the set or class “EnjoySport” ?
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Remarks:

q Domains of the features in the learning task:

Sky Temperature Humidity Wind Water Forecast

sunny warm normal strong warm same
rainy cold high light cool change

cloudy

q A concept is a subset of a larger set of objects. In the exemplary learning task the larger
object set contains all possible weather conditions, while the subset (= the concept) contains
those weather conditions when surfing is enjoyed.

q A hypothesis is expected to “capture a (target) concept”, to “explain a (target) concept”, or to
“predict a (target) concept” in terms of the feature expressions of the objects.

q The “quality”, the “persuasiveness”, or the “power” of a hypothesis depends on its capability
to represent (= to explain) a given set of observations, which are called examples here.

q In our learning setting, a hypothesis cannot be inferred or proven by deductive reasoning. A
hypothesis is a finding or an insight gained by inductive reasoning.
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Concept Learning: Search in Hypothesis Space
Simple Classification Problems (continued)

Definition 1 (Concept, Hypothesis, Hypothesis Space)

Let O be a set of objects, X the feature space associated with a model formation
function α : O → X, and X = {x | x = α(o), o ∈ O} be a

::::::::::::
multiset

::::
of

:::::::::::
feature

::::::::::::
vectors.

A concept is a subset of O and induces a subset X ′ ⊆ X. Concept learning means
learning the indicator function for X ′, which returns 1 if x ∈ X ′ and 0 otherwise.
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Concept Learning: Search in Hypothesis Space
Simple Classification Problems (continued)

Definition 1 (Concept, Hypothesis, Hypothesis Space)

Let O be a set of objects, X the feature space associated with a model formation
function α : O → X, and X = {x | x = α(o), o ∈ O} be a

::::::::::::
multiset

::::
of

:::::::::::
feature

::::::::::::
vectors.

A concept is a subset of O and induces a subset X ′ ⊆ X. Concept learning means
learning the indicator function for X ′, which returns 1 if x ∈ X ′ and 0 otherwise.

A hypothesis is a function h(x), h : X → {0, 1}, that approximates the indicator
function for X ′ based on an example set D. The hypothesis space is a set H of
hypotheses among which h(x) is searched.

Objects

O
Classesγ(o)

C

X
Feature space

α(o)
y(x)

{1, 0}

h(x)

[
:::::
ML:I

::::::::::::::
Specification

:::
of

::::::::::
Learning

:::::::::::
Problems]
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Remarks:

q A hypothesis may also be called
::::::::::::::::::
model function or model. Note however, that it is common

practice to designate only the parameters of a model function, w, as hypothesis (and not the
model function itself), especially if the setting focuses on a certain class of models, such as
linear models, polynomials of a fixed degree, or Gaussian distributions.

q The subtle semantic distinction between the terms “model function” and “hypothesis” made in
machine learning is that the former term is typically used to denote a function class or a
particular class of computational approaches, while the latter term refers to a specific
instance of that class.

q Depending on the learning task—more specifically: on the
:::::::::::
structure

:::
of

:::::
the

::::::::::
feature

::::::::
space—a hypothesis (model function, model) can take different forms and, accordingly, is
denoted differently: h(x) (as done here), y(x) (in regression settings), T (for decision trees),∏
P (A | B) (within statistical learning), etc.
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Concept Learning: Search in Hypothesis Space
Simple Classification Problems (continued)

The example set D, D = {(x1, c1), . . . , (xn, cn)}, contains usually both positive (c = 1)
and negative (c = 0) examples. [learning task]

Definition 2 (Positive Classified, Consistent)

An example (x, c) is positive classified by a hypothesis h(x) iff h(x) = 1.

A hypothesis h(x) is consistent with an example (x, c) iff h(x) = c.

A hypothesis h(x) is consistent with a set D of examples, denoted as
consistent(h,D), iff:

∀(x, c) ∈ D : h(x) = c
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Remarks:

q The string “Iff” or “iff” is an abbreviation for “If and only if”, which means “necessary and
sufficient”. It is a textual representation for the logical biconditional, also known as material
biconditional or iff-connective. The respective symbol is “↔”. [Wolfram] [Wikipedia]

q The following terms are used synonymously: concept, target concept, target function.

q The fact that a hypothesis is consistent with an example can also be described the other way
round: an example is consistent with a hypothesis.

q Given an example (x, c), notice the difference between (1) positive classified and (2) being
consistent with a hypothesis. The former asks for h(x) = 1, disregarding the actual target
concept value c. The latter asks for the identity between the target concept c and the
hypothesis h(x).

q The consistency of h(x) can be analyzed for a single example as well as for a set D of
examples. Given the latter, consistency requires that h(x) = 1 iff c = 1, for all (x, c) ∈ D. This
is equivalent with the condition that h(x) = 0 iff c = 0, for all (x, c) ∈ D.

q Learning means to determine a hypothesis h(x) ∈ H that is consistent with D.
Similarly: Machine learning means to systematically search the hypothesis space.
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Concept Learning: Search in Hypothesis Space
Simple Classification Problems (continued)

Structure of a hypothesis h(x):

1. conjunction of feature-value pairs

2. three kinds of values: literal, ? (wildcard), ⊥ (contradiction)

A hypothesis for EnjoySport [learning task] : 〈 sunny, ?, ?, strong, ?, same 〉
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Concept Learning: Search in Hypothesis Space
Simple Classification Problems (continued)

Structure of a hypothesis h(x):

1. conjunction of feature-value pairs

2. three kinds of values: literal, ? (wildcard), ⊥ (contradiction)

A hypothesis for EnjoySport [learning task] : 〈 sunny, ?, ?, strong, ?, same 〉

Definition 3 (Maximally Specific / General Hypothesis)

The hypotheses s0(x) ≡ 0 and g0(x) ≡ 1 are called maximally specific and
maximally general hypothesis respectively. No x ∈ X is positive classified by s0(x),
and all x ∈ X are positive classified by g0(x).

Maximally specific / general hypothesis in the example [learning task] :

q s0 = 〈 ⊥, ⊥, ⊥, ⊥, ⊥, ⊥ 〉 (never enjoy sport)

q g0 = 〈 ?, ?, ?, ?, ?, ? 〉 (always enjoy sport)
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Concept Learning: Search in Hypothesis Space
Order of Hypotheses

Feature vectors X Hypothesis space H
specific

general

h1

x4

h2

h4

x1

h1-fulfilling

h4-fulfilling

h2-fulfilling

x1 = (sunny, warm, normal, strong, warm, same) h1 = 〈 sunny, ?, normal, ?, ?, ? 〉
h2 = 〈 sunny, ?, ?, ?, warm, ? 〉

x4 = (sunny, warm, high, strong, cool, change) h4 = 〈 sunny, ?, ?, ?, ?, ? 〉
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Concept Learning: Search in Hypothesis Space
Order of Hypotheses (continued)

Definition 4 (More General Relation)

Let X be a multiset of feature vectors and let h1(x) and h2(x) be two boolean-valued
functions with domain X. Then h1(x) is called more general than h2(x), denoted as
h1(x) ≥g h2(x), iff:

∀x ∈ X : ( h2(x) = 1 implies h1(x) = 1 )

h1(x) is called strictly more general than h2(x), denoted as h1(x) >g h2(x), iff:

(h1(x) ≥g h2(x)) and (h2(x) 6≥g h1(x))

In the illustration: h2(x) = 1 implies that h4(x) = 1. I.e., h4 is more general than h1.

ML:II-13 Machine Learning Basics © STEIN 2021



Concept Learning: Search in Hypothesis Space
Order of Hypotheses (continued)

Definition 4 (More General Relation)

Let X be a multiset of feature vectors and let h1(x) and h2(x) be two boolean-valued
functions with domain X. Then h1(x) is called more general than h2(x), denoted as
h1(x) ≥g h2(x), iff:

∀x ∈ X : ( h2(x) = 1 implies h1(x) = 1 )

h1(x) is called strictly more general than h2(x), denoted as h1(x) >g h2(x), iff:

(h1(x) ≥g h2(x)) and (h2(x) 6≥g h1(x))

In the illustration: h2(x) = 1 implies that h4(x) = 1. I.e., h4 is more general than h1.

About the maximally specific / general hypothesis:

q s0(x) is minimum and g0(x) is maximum with regard to ≥g: no hypothesis is
more specific wrt. s0(x), and no hypothesis is more general wrt. g0(x).

q We will consider only hypothesis spaces that contain s0(x) and g0(x).
ML:II-14 Machine Learning Basics © STEIN 2021



Remarks:

q If h1(x) is more general than h2(x), then h2(x) can also be called being more specific
than h1(x).

q The relations ≥g and >g are independent of a target concept. They depend only on the fact
that examples are positive classified by a hypothesis, i.e., whether h(x) = 1, (x, c) ∈ D. It is
not required that c = 1.

q The ≥g-relation defines a partial order on the hypothesis space H : ≥g is reflexive,
anti-symmetric, and transitive. The order is partial since (unlike in a total order) not all
hypothesis pairs stand in the relation. [Wikipedia partial, total]

I.e., we are given hypotheses hi(x), hj(x), for which neither hi(x) ≥g hj(x) nor hj(x) ≥g hi(x)
holds, such as the hypotheses h1(x) and h2(x) in the illustration.
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Remarks on entailment:

q The semantics of the implication, in words “a implies b”, denoted as a→ b, is as follows. a→ b

is true if either (1) a is true and b is true, or (2) if a is false and b is true, or (3) if a is false and b
is false—in short: “if a is true then b is true as well”, or, “the truth of a implies the truth of b”.

q “→” can be understood as “causality connective”: Let a and b be two events where a is a
cause for b. If we interpret the occurrence of an event as true and its non-occurrence as false,
we will observe only occurrence combinations such that the formula a→ b is true. The
connective is also known as material conditional, material implication, material consequence,
or simply, implication or conditional.

q Note in particular that the connective “→” does not mean “entails”, which would be denoted
as either⇒ or |=. Logical entailment (synonymously: logical inference, logical deduction,
logical consequence) allows to infer or to prove a formula β given a formula α.

Consider for instance the More-General-Definition: From the formula α = “h2(x) = 1” we
cannot infer or prove the formula β = “h1(x) = 1”.

q In the More-General-Definition the implication specifies a condition that is to be fulfilled by the
definiendum (= the thing to be defined). The implication is used to check whether or not a
thing belongs to the set of things specified by the definiens (= the expression that defines):

Each pair of functions, h1(x), h2(x), is a thing that belongs to the set of things specified by the
definition of the ≥g-relation (i.e., stands in the ≥g-relation) if and only if the implication
h2(x) = 1 → h1(x) = 1 is true for all x ∈ X.
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Remarks on entailment: (continued)

q In a nutshell: distinguish carefully between “α requires β”, denoted as α→ β, on the one
hand, and “from α follows β”, denoted as α⇒ β, on the other hand. α→ β is considered as a
sentence from the object language (language of discourse) and stipulates a computing
operation, whereas α⇒ β is a sentence from the meta language and makes an assertion
about the sentence α→ β, namely: “α→ β is a tautology”.

q Finally, consider the following sentences from the object language, which are synonymous:

“α→ β”
“α implies β”
“if α then β”
“α causes β”
“α requires β”
“α is sufficient for β”
“β is necessary for α”
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Concept Learning: Search in Hypothesis Space
Inductive Learning Hypothesis

“Any hypothesis found to approximate the target function well

over a sufficiently large set of training examples

will also approximate the target function well

over other unobserved examples.”

[p.23, Mitchell 1997]
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Concept Learning: Search in Hypothesis Space
Find-S Algorithm

1. h(x) = s0(x) // h(x) is a maximally specific hypothesis in H.

2. FOREACH (x, c) ∈ D DO
IF c = 1 THEN // Learn only from positive examples.

IF h(x) = 0 DO
h = min_generalization(h,x) // Relax h(x) wrt.x.

ENDIF

ENDIF
ENDDO

3. return(h(x))

ML:II-19 Machine Learning Basics © STEIN 2021



Remarks:

q Except for the first step, generalization means to substitute question marks (wildcards) for
literals. Another term for “generalization” is “relaxation”.

q The function min_generalization(h,x) returns a hypothesis h′(x) that is minimally generalized
wrt. h(x) and that is consistent with (x, 1). Denoted formally: h′(x) ≥g h(x) and h′(x) = 1, and
there is no h′′(x) with h′(x) >g h

′′(x) ≥g h(x) with h′′(x) = 1.

q For more complex hypothesis structures the relaxation of h(x), min_generalization(h,x), may
not be unique. In such a case one of the alternatives has to be chosen.

q If a hypothesis h(x) needs to be relaxed towards some h′(x) with h′(x) 6∈ H, the maximally
general hypothesis g0 ≡ 1 can be added to H.

q Similar to min_generalization(h,x), a function min_specialization(h,x) can be defined, which
returns a minimally specialized, consistent hypotheses for negative examples.
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Concept Learning: Search in Hypothesis Space
Find-S Algorithm (continued)

See the example set D for the concept EnjoySport .

Feature vectors X Hypothesis space H
specific

general

h1

x1

h0

h0 = s0 = 〈 ⊥, ⊥, ⊥, ⊥, ⊥, ⊥ 〉

x1 = (sunny, warm, normal, strong, warm, same) h1 = 〈 sunny, warm, normal, strong, warm, same 〉
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Concept Learning: Search in Hypothesis Space
Find-S Algorithm (continued)

See the example set D for the concept EnjoySport .

Feature vectors X Hypothesis space H
specific

general

h1

x1

h0

h2, 3

x2

h0 = s0 = 〈 ⊥, ⊥, ⊥, ⊥, ⊥, ⊥ 〉

x1 = (sunny, warm, normal, strong, warm, same) h1 = 〈 sunny, warm, normal, strong, warm, same 〉

x2 = (sunny, warm, high, strong, warm, same) h2 = 〈 sunny, warm, ?, strong, warm, same 〉

ML:II-22 Machine Learning Basics © STEIN 2021



Concept Learning: Search in Hypothesis Space
Find-S Algorithm (continued)

See the example set D for the concept EnjoySport .

Feature vectors X Hypothesis space H
specific

general

h1

x1

h0

h2, 3

x2

x3

h0 = s0 = 〈 ⊥, ⊥, ⊥, ⊥, ⊥, ⊥ 〉

x1 = (sunny, warm, normal, strong, warm, same) h1 = 〈 sunny, warm, normal, strong, warm, same 〉

x2 = (sunny, warm, high, strong, warm, same) h2 = 〈 sunny, warm, ?, strong, warm, same 〉

x3 = (rainy, cold, high, strong, warm, change) h3 = 〈 sunny, warm, ?, strong, warm, same 〉
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Concept Learning: Search in Hypothesis Space
Find-S Algorithm (continued)

See the example set D for the concept EnjoySport .

Feature vectors X Hypothesis space H
specific

general

h1

x1

h0

h2, 3

x2

x3

x4

h4

h0 = s0 = 〈 ⊥, ⊥, ⊥, ⊥, ⊥, ⊥ 〉

x1 = (sunny, warm, normal, strong, warm, same) h1 = 〈 sunny, warm, normal, strong, warm, same 〉

x2 = (sunny, warm, high, strong, warm, same) h2 = 〈 sunny, warm, ?, strong, warm, same 〉

x3 = (rainy, cold, high, strong, warm, change) h3 = 〈 sunny, warm, ?, strong, warm, same 〉

x4 = (sunny, warm, high, strong, cool, change) h4 = 〈 sunny, warm, ?, strong, ?, ? 〉
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Concept Learning: Search in Hypothesis Space
Discussion of the Find-S Algorithm

1. Did we learn the only concept—or are there others?

2. Why should one pursuit the maximally specific hypothesis?

3. What if several maximally specific hypotheses exist?

4. Inconsistencies in the example set D remain undetected.

5. An inappropriate hypothesis structure or space H remains undetected.
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Concept Learning: Version Space

Definition 5 (Version Space)

The version space VH,D of a hypothesis space H and a example set D is comprised
of all hypotheses h(x) ∈ H that are consistent with a set D of examples:

VH,D = {h(x) | h(x) ∈ H ∧ ( ∀(x, c) ∈ D : h(x) = c ) }
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Concept Learning: Version Space

Definition 5 (Version Space)

The version space VH,D of a hypothesis space H and a example set D is comprised
of all hypotheses h(x) ∈ H that are consistent with a set D of examples:

VH,D = {h(x) | h(x) ∈ H ∧ ( ∀(x, c) ∈ D : h(x) = c ) }

Illustration of VH,D for the example set D:

{ < sunny, ?, ?, ?, ?, ? > , < ?, warm , ?, ?, ?, ? > }

< sunny, ?, ?, strong, ?, ? > < sunny, warm, ?, ?, ?, ? > < ?, warm, ?, strong, ?, ? >

{ < sunny, warm, ?, strong, ?, ? > }S

G
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Remarks:

q The term “version space” reflects the fact that VH,D represents the set of all consistent
versions of the target concept that are encoded in D.

q A naive approach for the construction of the version space is the following: (1) enumeration of
all members of H, and, (2) elimination of those h(x) ∈ H for which h(x) 6= c holds. This
approach presumes a finite hypothesis space H and is feasible only for toy problems.
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Concept Learning: Version Space

Definition 6 (Boundary Sets of a Version Space)

Let H be hypothesis space and let D be set of examples. Then, based on the
≥g-relation, the set of maximally general hypotheses, G, is defined as follows:

G = { g(x) | g(x) ∈ H ∧ consistent(g,D) ∧
( 6 ∃g′(x) : g′(x) ∈ H ∧ g′(x) >g g(x) ∧ consistent(g′, D) ) }

Similarly, the set of maximally specific (i.e., minimally general) hypotheses, S, is
defined as follows:

S = {s(x) | s(x) ∈ H ∧ consistent(s,D) ∧
( 6 ∃s′(x) : s′(x) ∈ H ∧ s(x) >g s

′(x) ∧ consistent(s′, D) ) }
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Concept Learning: Version Space

Theorem 7 (Version Space Representation)

Let X be a multiset of feature vectors, C = {0, 1} be a set of classes, and H be a
set of boolean-valued functions with domain X. Moreover, let D ⊆ X × C be a
multiset of examples.

Then, based on the ≥g-relation, each member of the version space VH,D lies
between two members of G and S respectively:

VH,D = {h(x) | h(x) ∈ H ∧
( ∃g(x) ∈ G ∃s(x) ∈ S : g(x) ≥g h(x) ≥g s(x) ) }
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Remarks:

q The correctness of Theorem 7 is not obvious. The theorem allows us to characterize the set
of all consistent hypotheses by the two boundary sets G and S.
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Concept Learning: Version Space
Candidate Elimination Algorithm [Mitchell 1997]

1. Initialization: G = {g0}, S = {s0}

2. If x is a positive example

q Remove from G any hypothesis that is not consistent with x

q For each hypothesis s in S that is not consistent with x

q Remove s from S

q Add to S all minimal generalizations h of s such that

1. h is consistent with x and
2. some member of G is more general than h

q Remove from S any hypothesis that is less specific than another hypothesis in S
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Concept Learning: Version Space
Candidate Elimination Algorithm [Mitchell 1997] (continued)

1. Initialization: G = {g0}, S = {s0}

2. If x is a positive example

q Remove from G any hypothesis that is not consistent with x

q For each hypothesis s in S that is not consistent with x

q Remove s from S

q Add to S all minimal generalizations h of s such that

1. h is consistent with x and
2. some member of G is more general than h

q Remove from S any hypothesis that is less specific than another hypothesis in S

3. If x is a negative example

q Remove from S any hypothesis that is not consistent with x

q For each hypothesis g in G that is not consistent with x

q Remove g from G

q Add to G all minimal specializations h of g such that

1. h is consistent with x and
2. some member of S is more specific than h

q Remove from G any hypothesis that is less general than another hypothesis in G
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Remarks:

q All hypothesis between G and S are consistent with all examples seen so far; i.e., they
“accept” the positive examples and “reject” the negative examples.

q The basic idea of Candidate Elimination is as follows:

– Deal with false positives. A maximally general hypothesis g(x) ∈ G tolerates the negative
examples in first instance. Hence, g(x) needs to be constrained (= specialized) with
regard to each negative example that is not consistent with g(x).

– Deal with false negatives. A maximally specific hypothesis s(x) ∈ S restricts the positive
examples in first instance. Hence, s(x) needs to be relaxed (= generalized) with regard to
each positive example that is not consistent with s(x).

q The G boundary of the version space summarizes the information from the previously
encountered negative examples. The S boundary forms a summary of the previously
encountered positive examples.
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Concept Learning: Version Space
Candidate Elimination Algorithm (pseudo code)

1. G = {g0} // G is the set of maximally general hypothesis in H.
S = {s0} // S is the set of maximally specific hypothesis in H.

2. FOREACH (x, c) ∈ D DO
IF c = 1 THEN // x is a positive example.
FOREACH g ∈ G DO IF g(x) 6= 1 THEN G = G \ {g} ENDDO
FOREACH s ∈ S DO
IF s(x) 6= 1 THEN
S = S \ {s}, S+ = min_generalizations(s,x)
FOREACH s ∈ S+ DO IF (∃g ∈ G : g ≥g s) THEN S = S ∪ {s} ENDDO
FOREACH s ∈ S DO IF (∃s′ ∈ S : s′ 6= s ∧ s ≥g s′) THEN S = S \ {s} ENDDO

ENDDO
ELSE // x is a negative example.
FOREACH s ∈ S DO IF s(x) 6= 0 THEN S = S \ {s} ENDDO
FOREACH g ∈ G DO
IF g(x) 6= 0 THEN
G = G \ {g}, G− = min_specializations(g,x)
FOREACH g ∈ G− DO IF (∃s ∈ S : g ≥g s) THEN G = G ∪ {g} ENDDO
FOREACH g ∈ G DO IF (∃g′ ∈ G : g′ 6= g ∧ g′ ≥g g) THEN G = G \ {g} ENDDO

ENDDO
ENDIF

ENDDO

3. return(G,S)
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Concept Learning: Version Space
Candidate Elimination Algorithm (pseudo code) (continued)

1. G = {g0} // G is the set of maximally general hypothesis in H.
S = {s0} // S is the set of maximally specific hypothesis in H.

2. FOREACH (x, c) ∈ D DO
IF c = 1 THEN // x is a positive example.
FOREACH g ∈ G DO IF g(x) 6= 1 THEN G = G \ {g} ENDDO
FOREACH s ∈ S DO
IF s(x) 6= 1 THEN
S = S \ {s}, S+ = min_generalizations(s,x)
FOREACH s ∈ S+ DO IF (∃g ∈ G : g ≥g s) THEN S = S ∪ {s} ENDDO
FOREACH s ∈ S DO IF (∃s′ ∈ S : s′ 6= s ∧ s ≥g s′) THEN S = S \ {s} ENDDO

ENDDO
ELSE // x is a negative example.
FOREACH s ∈ S DO IF s(x) 6= 0 THEN S = S \ {s} ENDDO
FOREACH g ∈ G DO
IF g(x) 6= 0 THEN
G = G \ {g}, G− = min_specializations(g,x)
FOREACH g ∈ G− DO IF (∃s ∈ S : g ≥g s) THEN G = G ∪ {g} ENDDO
FOREACH g ∈ G DO IF (∃g′ ∈ G : g′ 6= g ∧ g′ ≥g g) THEN G = G \ {g} ENDDO

ENDDO
ENDIF

ENDDO

3. return(G,S)
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Concept Learning: Version Space
Illustration of the Candidate Elimination Algorithm

{ < ?, ?, ?, ?, ?, ? > }

{ < ⊥, ⊥, ⊥, ⊥, ⊥, ⊥ > }

G0,

S0

ML:II-37 Machine Learning Basics © STEIN 2021



Concept Learning: Version Space
Illustration of the Candidate Elimination Algorithm (continued)

{ < ?, ?, ?, ?, ?, ? > }

{ < ⊥, ⊥, ⊥, ⊥, ⊥, ⊥ > }

G0,

S0

{ < sunny, warm, normal, strong, warm, same > } S1

G1,

x1 = (sunny, warm, normal, strong, warm, same) EnjoySport(x1) = 1
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Concept Learning: Version Space
Illustration of the Candidate Elimination Algorithm (continued)

{ < ?, ?, ?, ?, ?, ? > }

{ < ⊥, ⊥, ⊥, ⊥, ⊥, ⊥ > }

G0,

S0

{ < sunny, warm, normal, strong, warm, same > } S1

G1,

{ < sunny, warm, ?, strong, warm, same > } S2,

G2

x1 = (sunny, warm, normal, strong, warm, same) EnjoySport(x1) = 1
x2 = (sunny, warm, high, strong, warm, same) EnjoySport(x2) = 1
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Concept Learning: Version Space
Illustration of the Candidate Elimination Algorithm (continued)

{ < ?, ?, ?, ?, ?, ? > }

{ < ⊥, ⊥, ⊥, ⊥, ⊥, ⊥ > }

G0,

S0

{ < sunny, warm, normal, strong, warm, same > } S1

G1,

{ < sunny, warm, ?, strong, warm, same > } S2,

G2

{ < sunny, ?, ?, ?, ?, ? >, < ?, warm, ?, ?, ?, ? >, < ?, ?, ?, ?, ?, same > } G3

S3

x1 = (sunny, warm, normal, strong, warm, same) EnjoySport(x1) = 1
x2 = (sunny, warm, high, strong, warm, same) EnjoySport(x2) = 1
x3 = (rainy, cold, high, strong, warm, change) EnjoySport(x3) = 0 [feature domains] [algorithm]
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Concept Learning: Version Space
Illustration of the Candidate Elimination Algorithm (continued)

{ < ?, ?, ?, ?, ?, ? > }

{ < ⊥, ⊥, ⊥, ⊥, ⊥, ⊥ > }

G0,

S0

{ < sunny, warm, normal, strong, warm, same > } S1

G1,

{ < sunny, warm, ?, strong, warm, same > } S2,

G2

{ < sunny, ?, ?, ?, ?, ? >, < ?, warm, ?, ?, ?, ? >, < ?, ?, ?, ?, ?, same > } G3

S3

{ < sunny, ?, ?, ?, ?, ? >, < ?, warm, ?, ?, ?, ? > }

< sunny, ?, ?, strong, ?, ? > < sunny, warm, ?, ?, ?, ? > < ?, warm, ?, strong, ?, ? >

{ < sunny, warm, ?, strong, ?, ? > }

G4

S4

x1 = (sunny, warm, normal, strong, warm, same) EnjoySport(x1) = 1
x2 = (sunny, warm, high, strong, warm, same) EnjoySport(x2) = 1
x3 = (rainy, cold, high, strong, warm, change) EnjoySport(x3) = 0 [feature domains] [algorithm]
x4 = (sunny, warm, high, strong, cool, change) EnjoySport(x4) = 1
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Concept Learning: Version Space
Discussion of the Candidate Elimination Algorithm

1. What about selecting examples from D according to a certain strategy?
Keyword: active learning

2. What are partially learned concepts and how to exploit them?
Keyword: ensemble classification

3. The version space as defined here is “biased”. What does this mean?
Keywords: representation bias, search bias

4. Will Candidate Elimination converge towards the correct hypothesis?

5. When does one end up with an empty version space?
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Concept Learning: Version Space
Question 1: Selecting Examples from D

{ < sunny, ?, ?, ?, ?, ? > , < ?, warm , ?, ?, ?, ? > }

< sunny, ?, ?, strong, ?, ? > < sunny, warm, ?, ?, ?, ? > < ?, warm, ?, strong, ?, ? >

{ < sunny, warm, ?, strong, ?, ? > }S

G

An example from which we can “maximally” learn:

x7 = (sunny, warm, normal, light, warm, same)
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Concept Learning: Version Space
Question 1: Selecting Examples from D (continued)

{ < sunny, ?, ?, ?, ?, ? > , < ?, warm , ?, ?, ?, ? > }

< sunny, ?, ?, strong, ?, ? > < sunny, warm, ?, ?, ?, ? > < ?, warm, ?, strong, ?, ? >

{ < sunny, warm, ?, strong, ?, ? > }S

G

An example from which we can “maximally” learn:

x7 = (sunny, warm, normal, light, warm, same)

Irrespective the value of c, (x7, c) is consistent with 3 of the 6 hypotheses:

q If EnjoySport(x7) = 1 S can be further generalized.

q If EnjoySport(x7) = 0 G can be further specialized.
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Concept Learning: Version Space
Question 2: Partially Learned Concepts

{ < sunny, ?, ?, ?, ?, ? > , < ?, warm , ?, ?, ?, ? > }

< sunny, ?, ?, strong, ?, ? > < sunny, warm, ?, ?, ?, ? > < ?, warm, ?, strong, ?, ? >

{ < sunny, warm, ?, strong, ?, ? > }S

G

Combine the 6 classifiers in the version space to decide about new examples:

Example Sky Temperature Humidity Wind Water Forecast EnjoySport

5 sunny warm normal strong cool change 6+ : 0–
6 rainy cold normal light warm same 0+ : 6–
7 sunny warm normal light warm same 3+ : 3–
8 sunny cold normal strong warm same 2+ : 4–
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Concept Learning: Version Space
Question 2: Partially Learned Concepts (continued)

{ < sunny, ?, ?, ?, ?, ? > , < ?, warm , ?, ?, ?, ? > }

< sunny, ?, ?, strong, ?, ? > < sunny, warm, ?, ?, ?, ? > < ?, warm, ?, strong, ?, ? >

{ < sunny, warm, ?, strong, ?, ? > }S

G

Combine the 6 classifiers in the version space to decide about new examples:

Example Sky Temperature Humidity Wind Water Forecast EnjoySport

5 sunny warm normal strong cool change 6+ : 0–
6 rainy cold normal light warm same 0+ : 6–
7 sunny warm normal light warm same 3+ : 3–
8 sunny cold normal strong warm same 2+ : 4–
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Concept Learning: Version Space
Question 2: Partially Learned Concepts (continued)

{ < sunny, ?, ?, ?, ?, ? > , < ?, warm , ?, ?, ?, ? > }

< sunny, ?, ?, strong, ?, ? > < sunny, warm, ?, ?, ?, ? > < ?, warm, ?, strong, ?, ? >

{ < sunny, warm, ?, strong, ?, ? > }S

G

Combine the 6 classifiers in the version space to decide about new examples:

Example Sky Temperature Humidity Wind Water Forecast EnjoySport

5 sunny warm normal strong cool change 6+ : 0–
6 rainy cold normal light warm same 0+ : 6–
7 sunny warm normal light warm same 3+ : 3–
8 sunny cold normal strong warm same 2+ : 4–
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Concept Learning: Version Space
Question 2: Partially Learned Concepts (continued)

{ < sunny, ?, ?, ?, ?, ? > , < ?, warm , ?, ?, ?, ? > }

< sunny, ?, ?, strong, ?, ? > < sunny, warm, ?, ?, ?, ? > < ?, warm, ?, strong, ?, ? >

{ < sunny, warm, ?, strong, ?, ? > }S

G

Combine the 6 classifiers in the version space to decide about new examples:

Example Sky Temperature Humidity Wind Water Forecast EnjoySport

5 sunny warm normal strong cool change 6+ : 0–
6 rainy cold normal light warm same 0+ : 6–
7 sunny warm normal light warm same 3+ : 3–
8 sunny cold normal strong warm same 2+ : 4–

ML:II-48 Machine Learning Basics © STEIN 2021



Concept Learning: Version Space
Question 2: Partially Learned Concepts (continued)

{ < sunny, ?, ?, ?, ?, ? > , < ?, warm , ?, ?, ?, ? > }

< sunny, ?, ?, strong, ?, ? > < sunny, warm, ?, ?, ?, ? > < ?, warm, ?, strong, ?, ? >

{ < sunny, warm, ?, strong, ?, ? > }S

G

Combine the 6 classifiers in the version space to decide about new examples:

Example Sky Temperature Humidity Wind Water Forecast EnjoySport

5 sunny warm normal strong cool change 6+ : 0–
6 rainy cold normal light warm same 0+ : 6–
7 sunny warm normal light warm same 3+ : 3–
8 sunny cold normal strong warm same 2+ : 4–
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Concept Learning: Version Space
Question 3: Inductive Bias

A new set of training examples D :

Example Sky Temperature Humidity Wind Water Forecast EnjoySport

9 sunny warm normal strong cool change yes
10 cloudy warm normal strong cool change yes

Ü S = { 〈 ?, warm, normal, strong, cool, change 〉 }
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Concept Learning: Version Space
Question 3: Inductive Bias (continued)

A new set of training examples D :

Example Sky Temperature Humidity Wind Water Forecast EnjoySport

9 sunny warm normal strong cool change yes
10 cloudy warm normal strong cool change yes

Ü S = { 〈 ?, warm, normal, strong, cool, change 〉 }
...

11 rainy warm normal strong cool change no

Ü S = { }

Discussion:

q What assumptions about the target concept are met by the learner a-priori?
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Concept Learning: Version Space
Question 3: Inductive Bias (continued)

A new set of training examples D :

Example Sky Temperature Humidity Wind Water Forecast EnjoySport

9 sunny warm normal strong cool change yes
10 cloudy warm normal strong cool change yes

Ü S = { 〈 ?, warm, normal, strong, cool, change 〉 }
...

11 rainy warm normal strong cool change no

Ü S = { }

Discussion:

q What assumptions about the target concept are met by the learner a-priori?

Ü H may be designed to contain more elaborate concepts:
〈 sunny, ?, ?, ?, ?, ? 〉 ∨ 〈 cloudy, ?, ?, ?, ?, ? 〉.
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Concept Learning: Version Space
Question 3: Inductive Bias (continued)

“The policy by which a [learning] algorithm generalizes from observed

training examples to classify unseen instances is its inductive bias. [. . . ]

Inductive bias is the set of assumptions that,

together with the training data,

deductively justify the classification by the learner to future instances.”

[p.43, Mitchell 1997]

ML:II-53 Machine Learning Basics © STEIN 2021



Concept Learning: Version Space
Question 3: Inductive Bias (continued)

q In a binary classification problem the unrestricted (= unbiased) hypothesis
space contains |P(X)| = 2|X| elements.

q A learning algorithm that considers all possible hypotheses as equally likely
makes no a-priori assumption with regard to the target concept.

q A learning algorithm without a-priori assumptions has no “inductive bias”.
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Concept Learning: Version Space
Question 3: Inductive Bias (continued)

q In a binary classification problem the unrestricted (= unbiased) hypothesis
space contains |P(X)| = 2|X| elements.

q A learning algorithm that considers all possible hypotheses as equally likely
makes no a-priori assumption with regard to the target concept.

q A learning algorithm without a-priori assumptions has no “inductive bias”.

Ü A learning algorithm without inductive bias has no directive to classify unseen
examples. Put another way: the learner cannot generalize.

Ü A learning algorithm without inductive bias can only memorize.

Which algorithm (Find-S, Candidate Elimination) has a stronger inductive bias?
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Chapter ML:II

II. Machine Learning Basics
q Concept Learning: Search in Hypothesis Space
q Concept Learning: Version Space
q From Regression to Classification
q Evaluating Effectiveness
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From Regression to Classification
Regression versus Classification

q X is a multiset of p-dimensional feature vectors:

Customer 1
house owner yes
income (p.a.) 51 000 EUR
repayment (p.m.) 1 000 EUR
credit period 7 years
SCHUFA entry no
age 37
married yes
. . .

. . .

Customer n
house owner no
income (p.a.) 55 000 EUR
repayment (p.m.) 1 200 EUR
credit period 8 years
SCHUFA entry no
age ?
married yes
. . .
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From Regression to Classification
Regression versus Classification (continued)

q X is a multiset of p-dimensional feature vectors:

Customer 1
house owner yes
income (p.a.) 51 000 EUR
repayment (p.m.) 1 000 EUR
credit period 7 years
SCHUFA entry no
age 37
married yes
. . .

. . .

Customer n
house owner no
income (p.a.) 55 000 EUR
repayment (p.m.) 1 200 EUR
credit period 8 years
SCHUFA entry no
age ?
married yes
. . .

Regression setting:
q R is the range of the regression function.
q yi is the

::::::::::
ground

::::::::
truth of the credit line value for xi, xi ∈ X.

q D = {(x1, y1), . . . , (xn, yn)} ⊆ X ×R is a multiset of examples.
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From Regression to Classification
Regression versus Classification (continued)

q X is a multiset of p-dimensional feature vectors:

Customer 1
house owner yes
income (p.a.) 51 000 EUR
repayment (p.m.) 1 000 EUR
credit period 7 years
SCHUFA entry no
age 37
married yes
. . .

. . .

Customer n
house owner no
income (p.a.) 55 000 EUR
repayment (p.m.) 1 200 EUR
credit period 8 years
SCHUFA entry no
age ?
married yes
. . .

Regression setting:
q R is the range of the regression function.
q yi is the

::::::::::
ground

::::::::
truth of the credit line value for xi, xi ∈ X.

q D = {(x1, y1), . . . , (xn, yn)} ⊆ X ×R is a multiset of examples.

Classification setting:
q C = {−1, 1} is a set of two classes. Similarly: {0, 1}, {	,⊕}, {no, yes}, etc.

q ci is the ground truth of the creditworthiness class for xi, xi ∈ X.
q D = {(x1, c1), . . . , (xn, cn)} ⊆ X × C is a multiset of examples.
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From Regression to Classification
The Linear Regression Model

q Given x, predict a real-valued output under a linear model function:

y(x) = w0 +

p∑
j=1

wj · xj

q Vector notation with x0 = 1 and w = (w0, w1, . . . , wp)
T :

y(x) = wTx
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From Regression to Classification
The Linear Regression Model (continued)

q Given x, predict a real-valued output under a linear model function:

y(x) = w0 +

p∑
j=1

wj · xj

q Vector notation with x0 = 1 and w = (w0, w1, . . . , wp)
T :

y(x) = wTx

q Given x1, . . . ,xn, assess goodness of fit as residual sum of squares:

(1)RSS(w) =

n∑
i=1

(yi − y(xi))
2 =

n∑
i=1

(yi −wTxi)
2
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From Regression to Classification
The Linear Regression Model (continued)

q Given x, predict a real-valued output under a linear model function:

y(x) = w0 +

p∑
j=1

wj · xj

q Vector notation with x0 = 1 and w = (w0, w1, . . . , wp)
T :

y(x) = wTx

q Given x1, . . . ,xn, assess goodness of fit as residual sum of squares:

(1)RSS(w) =

n∑
i=1

(yi − y(xi))
2 =

n∑
i=1

(yi −wTxi)
2

q Estimate optimum w by minimizing the residual sum of squares:

(2)ŵ = argmin
w∈Rp+1

RSS(w)
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Remarks (residuals):

q A residual is the difference between a target value (ground truth, observation) yi and the
estimated value y(xi) of the model function.

q The residual sum of squares, RSS, is the sum of squares of the residuals. It is also known as
the sum of squared residuals, SSR, or the sum of squared errors of estimates, SSE.

q The RSS term quantifies the regression error—or similarly, the goodness of fit—in the form of
a single value.

q RSS provides several numerical and theoretical advantages, but it is not the only possibility to
assess the goodness of fit (= error) between observed values and the model function.
Alternative approaches for quantifying the error include absolute residual values or likelihood
estimates.

q The error computation is also called loss computation, cost computation, or generally,
performance computation. Similarly, for the right-hand side of Equation (1) the following
names are used: error function, loss function, cost function, or generally, performance term.

Measures that quantify this kind of performance are called effectiveness measures. This term
must not be confused with efficiency measures, which quantify the computational effort or
runtime performance of a method.

q Residual 6= Loss. Observe the subtle difference between the two concepts “residual” and
“loss” (similarly: “error”, “cost”). The former denotes the difference between a target value
(ground truth, observation) and its estimate, whereas the latter denotes the interpretation of
this difference.
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Remarks (randomness and distributions):

q The yi are considered as realizations of n respective random variables Yi. Btw., do not
confuse the function y() with a realization yi.

q Equation (2): Estimating ŵ by RSS minimization is based on the following assumptions:

1. The probability distributions of the Yi have the same variance.

2. The expectations E[Yi] of the Yi lie on a straight line, known as the true (population)
regression line: E[Yi] = w∗Txi. I.e., the relation between the xi and the observed yi can
be explained completely by a linear model function.

3. The random variables Yi are statistically independent.

These assumptions are called the weak set (of assumptions). Along with a fourth assumption
about the distribution shape of Yi they become the strong set of assumptions.

q Yi may also be defined as y(xi) + Ei, in which case the disturbance term Ei has the same
distribution as Yi but the mean 0 (while Yi has the mean wTxi).

q Within the classical regression setting the variable x, also called regressor, is a controlled
variable. I.e., its instances xi, i = 1, . . . , n, are not considered as outcomes of a random
experiment: the xi are given, chosen with intent, or constructed without any effect of chance.

Within the typical machine learning setting, the occurrence of feature vectors—more general,
the sample formation process underlying X—is governed by a probability distribution: certain
observations may be more likely than others, and hence each feature vector xi is considered
as the realization of a random vector Xi.
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From Regression to Classification
One-Dimensional Feature Space

x
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From Regression to Classification
One-Dimensional Feature Space (continued)

x
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From Regression to Classification
One-Dimensional Feature Space (continued)

x

residual

xi

y(xi)

yi

RSS =

n∑
i=1

(yi − y(xi))
2
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From Regression to Classification
One-Dimensional Feature Space (continued)

x

residual

xi

y(xi)

yi

w0

slope = w1

y(x) = w0 + w1 · x, RSS(w0, w1) =

n∑
i=1

(yi − w0 − w1 · xi)2

ML:II-68 Machine Learning Basics © STEIN 2022



From Regression to Classification
One-Dimensional Feature Space (continued) [higher-dimensional]

Minimize RSS(w0, w1) via a direct method:

1.
∂

∂w0

n∑
i=1

(yi − w0 − w1 · xi)2 = 0

; . . . ; ŵ0 =
1

n

n∑
i=1

yi −
w1

n

n∑
i=1

xi = ȳ − ŵ1 · x̄
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From Regression to Classification
One-Dimensional Feature Space (continued) [higher-dimensional]

Minimize RSS(w0, w1) via a direct method:

1.
∂

∂w0

n∑
i=1

(yi − w0 − w1 · xi)2 = 0

; . . . ; ŵ0 =
1

n

n∑
i=1

yi −
w1

n

n∑
i=1

xi = ȳ − ŵ1 · x̄

2.
∂

∂w1

n∑
i=1

(yi − w0 − w1 · xi)2 = 0

; . . . ; ŵ1 ≡ w1 =

n∑
i=1

(xi − x̄) · (yi − ȳ)

n∑
i=1

(xi − x̄)2
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From Regression to Classification
One-Dimensional Feature Space (continued) [higher-dimensional]

Minimize RSS(w0, w1) via a direct method:

1.
∂

∂w0

n∑
i=1

(yi − w0 − w1 · xi)2 = 0

; . . . ; ŵ0 =
1

n

n∑
i=1

yi −
w1

n

n∑
i=1

xi = ȳ − ŵ1 · x̄

2.
∂

∂w1

n∑
i=1

(yi − w0 − w1 · xi)2 = 0

; . . . ; ŵ1 ≡ w1 =

n∑
i=1

(xi − x̄) · (yi − ȳ)

n∑
i=1

(xi − x̄)2
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From Regression to Classification
One-Dimensional Feature Space (continued)

Illustration of the task of minimizing RSS(w) =

n∑
i=1

(yi −wTxi)
2.

w0

w1

R
S

S
(w

)
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From Regression to Classification
Higher-Dimensional Feature Space

q Recall Equation (1) :

RSS(w) =

n∑
i=1

(yi −wTxi)
2

q Let X denote the n× (p+1) matrix where row i is the extended input vector
(1 xTi ) with (xi, yi) ∈ D.

Let y denote the n-vector of target values yi in the training set D.
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From Regression to Classification
Higher-Dimensional Feature Space (continued)

q Recall Equation (1) :

RSS(w) =

n∑
i=1

(yi −wTxi)
2

q Let X denote the n× (p+1) matrix where row i is the extended input vector
(1 xTi ) with (xi, yi) ∈ D.

Let y denote the n-vector of target values yi in the training set D.

; RSS(w) = (y −Xw)T (y −Xw)

RSS(w) is a quadratic function in p+1 parameters.
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From Regression to Classification
Higher-Dimensional Feature Space (continued) [one-dimensional]

Minimize RSS(w) via a direct method:

∂ RSS
∂w

= −2XT (y −Xw) = 0,
∂2 RSS
∂w∂wT

= −2XTX [Wikipedia 1, 2, 3]

XT (y −Xw) = 0

⇔ XTXw = XTy Normal equations.

; ŵ ≡ w = (XTX)−1XT︸ ︷︷ ︸
Pseudoinverse of X [Wikipedia]

y If X has full column rank p+1.
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From Regression to Classification
Higher-Dimensional Feature Space (continued) [one-dimensional]

Minimize RSS(w) via a direct method:

∂ RSS
∂w

= −2XT (y −Xw) = 0,
∂2 RSS
∂w∂wT

= −2XTX [Wikipedia 1, 2, 3]

XT (y −Xw) = 0

⇔ XTXw = XTy Normal equations.

; ŵ ≡ w = (XTX)−1XT︸ ︷︷ ︸
Pseudoinverse of X [Wikipedia]

y If X has full column rank p+1.
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From Regression to Classification
Higher-Dimensional Feature Space (continued) [one-dimensional]

Minimize RSS(w) via a direct method:

∂ RSS
∂w

= −2XT (y −Xw) = 0,
∂2 RSS
∂w∂wT

= −2XTX [Wikipedia 1, 2, 3]

XT (y −Xw) = 0

⇔ XTXw = XTy Normal equations.

; ŵ ≡ w = (XTX)−1XT︸ ︷︷ ︸
Pseudoinverse of X [Wikipedia]

y If X has full column rank p+1.

ŷ(xi) = ŵTxi Regression function with least squares estimator ŵ.

ŷ = Xŵ The n-vector of fitted values at the training input.

= X(XTX)−1XTy
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Remarks:

q A curve fitting (or regression) method that is based on the minimization of squared residuals
is called a method of least squares.

q Various approaches for operationalizing the method of least squares have been devised, in
particular for the case of linear model functions. From a numerical viewpoint one can
distinguish iterative methods, such as the

::::::
LMS

:::::::::::::
algorithm, and direct methods, such as

solving the normal equations via computing the pseudoinverse.

q More on direct methods. While solving the normal equations is usually fast, it suffers from
several deficits: it is numerically unstable and requires singularity handling. Numerically more
stable and more accurate methods are based on the QR decomposition and the singular
value decomposition, SVD.

q QR decomposition can deal with problems of up to 104 variables, provided a dense problem
structure. For significantly larger problems (additional 1-2 orders of magnitudes) as well as
for sparse matrices iterative solvers are the choice. Even larger, dense problems may be
tackled with Artificial Neural Networks.
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From Regression to Classification
Linear Regression for Classification (illustrated for p = 1)

Regression learns a real-valued function given as D = {(x1, y1), . . . , (xn, yn)}.

x

y(x)

y(x) = (w0 w1)
(
1
x

)
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From Regression to Classification
Linear Regression for Classification (illustrated for p = 1) (continued)

Binary-valued (±1) functions are also real-valued.

x

1

-1
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From Regression to Classification
Linear Regression for Classification (illustrated for p = 1) (continued)

Use linear regression to learn w from D, where yi = ±1 ≈ y(xi)
(?)
= wTxi.

x

1

-1

y(x)

y(x) = (w0 w1)
(
1
x

)
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From Regression to Classification
Linear Regression for Classification (illustrated for p = 1) (continued)

Use linear regression to learn w from D, where yi = ±1 ≈ y(xi)
(?)
= wTxi.

x

1

-1

y(x)

The function “sign(wTxi)” is likely to agree with yi = ±1.

q Regression: y(x) = wTx

q Classification: y(x) = sign(wTx)
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From Regression to Classification
Linear Regression for Classification (illustrated for p = 1) (continued)

Use linear regression to learn w from D, where yi = ±1 ≈ y(xi)
(?)
= wTxi.

x

y(x)

1

-1

+ +++

- --

The function “sign(wTxi)” is likely to agree with yi = ±1.

q Regression: y(x) = wTx

q Classification: y(x) = sign(wTx)
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From Regression to Classification
Linear Regression for Classification (illustrated for p = 1) (continued)

Use linear regression to learn w from D, where yi = ±1 ≈ y(xi)
(?)
= wTxi.

x

y(x)

1

-1

+ +++

- --

- -- + +++
x'

0

The function “sign(wTxi)” is likely to agree with yi = ±1.

q Regression: y(x) = wTx

q Classification: y(x) = sign(wTx)
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From Regression to Classification
Linear Regression for Classification (illustrated for p = 1) (continued)

Use linear regression to learn w from D, where yi = ±1 ≈ y(xi)
(?)
= wTxi.

x

y(x)

1

-1

+ +++

- --

- -- + +++
x'

0

sign(wTx) > 0sign(wTx) < 0

q The discrimination point, •, is defined by w0 + w1 · x′ = 0.

q For p = 2 we are given a discrimination line.

ML:II-85 Machine Learning Basics © STEIN 2022



Remarks:

(?) We consider the feature vector x in its extended form when used as operand in a scalar
product with the weight vector, wTx, and consequently, when noted as argument of the model
function, y(x). I.e., x = (1, x1, . . . , xp)

T ∈ Rp+1, and x0 = 1.

q The sign function is three-valued, with sign(z) = −1 (0, 1) for z < 0 (z = 0, z > 0)—i.e., the
case with wTx = 0 needs special treatment. Without loss of generality we will label y(0) with
the “positive” class (1, ⊕, yes, etc.) and define sign(0) = 1 in the respective algebraic
expressions.
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From Regression to Classification
Linear Regression for Classification (illustrated for p = 2)

x1

x2

1

-1
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From Regression to Classification
Linear Regression for Classification (illustrated for p = 2) (continued)

x1

x2

1

-1

+ +
+

+
+

+

+ +
+
+

+
+

+

+
+

+

+

+

+

+

-
- -
-

-

-
-

-
-
----

-
-- -- - -

++
++

+
+

+
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From Regression to Classification
Linear Regression for Classification (illustrated for p = 2) (continued)

Use linear regression to learn w from D, where yi = ±1 ≈ y(xi)
(?)
= wTxi.

x1

x2

1

-1

+ +
+

+
+

+

+ +
+
+

+
+

+

+
+

+

+

+

+

+

-
- -
-

-

-
-

-
-
----

-
-- -- - -

++
++

+
+

+

y(x1, x2) = (w0 w1 w2)

 1
x1
x2


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From Regression to Classification
Linear Regression for Classification (illustrated for p = 2) (continued)

Use linear regression to learn w from D, where yi = ±1 ≈ y(xi)
(?)
= wTxi.

x1

x2

1

-1

+ +
+

+
+

+

+ +
+
+

+
+

+

+
+

+

+

+

+

+

-
- -
-

-

-
-

-
-
--

y(x1, x2)

--
-

-- -- - -

++
++

+
+

+

The function “sign(wTxi)” is likely to agree with yi = ±1.

q Regression: y(x) = wTx

q Classification: y(x) = sign(wTx)
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From Regression to Classification
Linear Regression for Classification (illustrated for p = 2) (continued)

Use linear regression to learn w from D, where yi = ±1 ≈ y(xi)
(?)
= wTxi.

x1

x2

1

-1

+ +
+

+
+

+

+ +
+
+

+
+

+

+
+

+

+

+

+

+

-
- -
-

-

-
-

-
-
--

y(x1, x2)

--
-

-- -- - -

++
++

+
+

+

0 (w1 w2)T

The function “sign(wTxi)” is likely to agree with yi = ±1.

q Regression: y(x) = wTx

q Classification: y(x) = sign(wTx)
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From Regression to Classification
Linear Regression for Classification (illustrated for p = 2) (continued)

Use linear regression to learn w from D, where yi = ±1 ≈ y(xi)
(?)
= wTxi.

x1

x2

1

-1

+ +
+

+
+

+

+ +
+
+

+
+

+

+
+

+

+

+

+

+++
++

+
+

+
-
- -
-

-

-
-

-
-
----

-
-- -- - -

sign(wTx) > 0sign(wTx) < 0

(w1 w2)T

q The discrimination line, , is defined by w0 + w1 · x1 + w2 · x2 = 0.

q For p = 3 (p > 3) we are given a discriminating (hyper)plane.
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From Regression to Classification
Linear Regression for Classification (illustrated for p = 2) (continued)

Use linear regression to learn w from D, where yi = ±1 ≈ y(xi)
(?)
= wTxi.

x2
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+
+

q The discrimination line, , is defined by w0 + w1 · x1 + w2 · x2 = 0.

q For p = 3 (p > 3) we are given a discriminating (hyper)plane.
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Remarks:

q The shown figures illustrate how (linear) regression methods that are applied in the
input-output space implicitly define a hyperplane in the input space.

In general, linear regression is not the best choice to solve classification problems:
imbalanced class distributions and outliers can severely impair the classification
effectiveness.

q A suited regression method for classification is logistic regression, introduced in the part
Linear Models, which estimates the probability of class membership. Note that also logistic
regression is a linear classifier since its encoded hypothesis is a linear function in the
parameters w. The shown figures illustrate how (linear) regression methods that are applied
in the input-output space implicitly define a hyperplane in the input space.

An illustration of the input-output space of the logistic regression model along with the
implicitly defined hyperplane is shown here.
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From Regression to Classification
Linear Model Function Variants

The components (features) of the input vector x = (x1, . . . , xp) can stem from
different sources [Hastie et al. 2001] :

1. quantitative inputs

2. transformations of quantitative inputs, such as log xj,
√
xj

3. basis expansions, such as xj = (x1)
j

4. encoding of a qualitative variable g, g ∈ {1, . . . , p}, as xj = I(g = j)

5. interactions between variables, such as x3 = x1 · x2
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From Regression to Classification
Linear Model Function Variants (continued)

The components (features) of the input vector x = (x1, . . . , xp) can stem from
different sources [Hastie et al. 2001] :

1. quantitative inputs

2. transformations of quantitative inputs, such as log xj,
√
xj

3. basis expansions, such as xj = (x1)
j

4. encoding of a qualitative variable g, g ∈ {1, . . . , p}, as xj = I(g = j)

5. interactions between variables, such as x3 = x1 · x2

No matter the source of the xj, the model is still linear in its parameters w :

y(x) = w0 +

p∑
j=1

wj · φj(xj)
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From Regression to Classification
Linear Model Function Variants (continued)

The components (features) of the input vector x = (x1, . . . , xp) can stem from
different sources [Hastie et al. 2001] :

1. quantitative inputs

2. transformations of quantitative inputs, such as log xj,
√
xj

3. basis expansions, such as xj = (x1)
j

4. encoding of a qualitative variable g, g ∈ {1, . . . , p}, as xj = I(g = j)

5. interactions between variables, such as x3 = x1 · x2

No matter the source of the xj, the model is still linear in its parameters w :

y(x) = w0 +

p∑
j=1

wj · φj(xj)

q linear in the parameters: y(w) is a linear function
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From Regression to Classification
Linear Model Function Variants (continued)

The components (features) of the input vector x = (x1, . . . , xp) can stem from
different sources [Hastie et al. 2001] :

1. quantitative inputs

2. transformations of quantitative inputs, such as log xj,
√
xj

3. basis expansions, such as xj = (x1)
j

4. encoding of a qualitative variable g, g ∈ {1, . . . , p}, as xj = I(g = j)

5. interactions between variables, such as x3 = x1 · x2

No matter the source of the xj, the model is still linear in its parameters w :

y(x) = w0 +

p∑
j=1

wj · φj(xj)

q linear in the parameters: y(w) is a linear function

q basis functions: input variables (space) become(s) feature variables (space)
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From Regression to Classification
Non-Linear Decision Boundaries [

::::::::
logistic

::::::::::::
regression]

x2

x1

1

-1

1-1

-

+

+

+

+

++ +

+

+

+

+
+

+

+
+

+

+

+

+

+

+
- -

-

-
- --

-

-

-
- --

-
-

+

+

+

+

+

+

+
+ +

Higher order polynomial terms in the features (linear in the parameters):

y(x) = w0 + w1 · x1 + w2 · x2 + w3 · x21 + w4 · x22
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From Regression to Classification
Non-Linear Decision Boundaries (continued) [

::::::::
logistic

::::::::::::
regression]
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Higher order polynomial terms in the features (linear in the parameters):

y(x) = w0 + w1 · x1 + w2 · x2 + w3 · x21 + w4 · x22
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From Regression to Classification
Non-Linear Decision Boundaries (continued) [

::::::::
logistic

::::::::::::
regression]
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x1
2 + x2

2  = 1

Higher order polynomial terms in the features (linear in the parameters):

y(x) = w0 + w1 · x1 + w2 · x2 + w3 · x21 + w4 · x22

with w =


−1
0
0
1
1

 ; y(x) = −1 + x21 + x22
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From Regression to Classification
Non-Linear Decision Boundaries (continued) [

::::::::
logistic

::::::::::::
regression]
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x1
2 + x2

2  = 1

x1
2 + x2

2  ≥ 1
c(x) = 1

x1
2 + x2

2  < 1
c(x) = -1

Higher order polynomial terms in the features (linear in the parameters):

y(x) = w0 + w1 · x1 + w2 · x2 + w3 · x21 + w4 · x22

with w =


−1
0
0
1
1

 ; y(x) = −1 + x21 + x22

Classification: Predict

{
c = 1, if x21 + x22 ≥ 1 ⇔ wTx ≥ 0

c = −1, if x21 + x22 < 1 ⇔ wTx < 0
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From Regression to Classification
Non-Linear Decision Boundaries (continued) [

::::::::
logistic

::::::::::::
regression]

x2

x1

1

-1

1-1

c(x) = 1

c(x) = -1

More complex polynomials entail more complex decision boundaries:

y(x) = w0 + w1 · x1 + w2 · x2 + w3 · x21 + w4 · x21 · x2 + w5 · x21 · x22 + . . .
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From Regression to Classification
Methods of Least Squares: Iterative versus Direct Methods

argmin
w

RSS(w), with RSS(w) =

n∑
i=1

(yi −wTxi)
2

w0

w1

R
S

S
(w

)
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From Regression to Classification
Methods of Least Squares: Iterative versus Direct Methods (continued)

argmin
w

RSS(w), with RSS(w) =

n∑
i=1

(yi −wTxi)
2

w0

w1

R
S

S
(w

)

:::::::
LMS

:::::::::::::::
algorithm:

q applicable as online algorithm
q robust algorithm structure
q unsatisfactory convergence
q allows stochastic sampling

xi

wi

yiy(xi)

error noise

Unknown
system

Adaptive
filter

+
+

-

D

ML:II-105 Machine Learning Basics © STEIN 2022

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-ml-introduction.pdf#algorithm-least-mean-squares


From Regression to Classification
Methods of Least Squares: Iterative versus Direct Methods (continued)

argmin
w

RSS(w), with RSS(w) =

n∑
i=1

(yi −wTxi)
2

w0

w1

R
S

S
(w

)

:::::::
LMS

:::::::::::::::
algorithm:

q applicable as online algorithm
q robust algorithm structure
q unsatisfactory convergence
q allows stochastic sampling

xi

wi

yiy(xi)

error noise

Unknown
system

Adaptive
filter

+
+

-

D

Normal equations:

q needs complete data
q numerically unstable
q requires singularity handling
q hardly applicable to big data

ŵ = (XTX)−1XTy
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Remarks:

q The principle of RSS minimization is orthogonal to (= independent of) the type of the model
function y(x), i.e., independent of its dimensionality as well as its linearity or nonlinearity.

q To fit the parameters w of a (one-dimensional, multi-dimensional, linear, nonlinear) model
function y(x), both the LMS algorithm and direct methods exploit information about the
derivative of the RSS term with respect to w. I.e., even if classification and not regression is
the goal, the distance to the decision boundary (and not the zero-one-loss) is computed,
since the zero-one-loss is non-differentiable.

q For a linear model function y(x), RSS(w) is a convex function and hence a single, global
optimum exists.

q A main goal of machine learning approaches is to avoid
:::::::::::::
overfitting. Overfitting, in turn, is

caused by an inadequate (too high) model function complexity—or, similarly, by insufficient
data. A means to reduce the model function complexity is

:::::::::::::::::
regularization. Both topics are

treated in the part Linear Models.

q Regularization will introduce additional constraints for the model function y(x) or the
parameter vector w. With regularization the minimization expression (2) will have two
summands: a performance term such as the RSS term, and a penalizing term such as a
norm. As before, the first term captures the model function’s goodness depending on w,
whereas the second term restricts the absolute values of the model function’s parameters w.
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From Regression to Classification
Properties of the Solution

Theorem 1 (Gauss-Markov)

Let D = {(x1, y1), . . . , (xn, yn)} be a multiset of examples to be fitted with a linear
model function as y(x)

(?)
= xTw. Within the class of linear

:::::::::::::::
unbiased estimators for

w, the least squares estimator ŵ has minimum variance, i.e., is most efficient.
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From Regression to Classification
Properties of the Solution (continued)

Theorem 1 (Gauss-Markov)

Let D = {(x1, y1), . . . , (xn, yn)} be a multiset of examples to be fitted with a linear
model function as y(x)

(?)
= xTw. Within the class of linear

:::::::::::::::
unbiased estimators for

w, the least squares estimator ŵ has minimum variance, i.e., is most efficient.

Related follow-up issues:

q mean and variance of ŵ

q proof of the Gauss-Markov theorem

q weak set and strong set of assumptions

q efficiency and consistency of unbiased estimators

q rank deficiencies, where the feature number p exceeds |D| = n

q relation between least squares and maximum likelihood estimators / methods
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Remarks:

q The Gauss-Markov Theorem is important since it follows already from the weak set of
assumptions.

q Under the strong set of assumptions the maximum likelihood estimates are identical to the
least-squares estimates.
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Chapter ML:II (continued)

II. Machine Learning Basics
q Concept Learning: Search in Hypothesis Space
q Concept Learning: Version Space
q From Regression to Classification
q Evaluating Effectiveness
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Evaluating Effectiveness
Misclassification Rate

Definition 8 (True Misclassification Rate / True Error of a Classifier y)

Let O be a finite set of objects, X the feature space associated with a model
formation function α : O → X, C a set of classes, y : X→ C a classifier, and
γ : O → C the ideal classifier to be approximated by y.

Let X = {x | x = α(o), o ∈ O} be a
::::::::::::
multiset

::::
of

:::::::::::
feature

::::::::::::
vectors and cx = γ(o), o ∈ O.

Then, the true misclassification rate of y(x), denoted Err ∗(y), is defined as follows:

Err ∗(y) =
|{x ∈ X : y(x) 6= cx}|

|X|
=
|{o ∈ O : y(α(o)) 6= γ(o)}|

|O|
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Evaluating Effectiveness
Misclassification Rate (continued)

Definition 8 (True Misclassification Rate / True Error of a Classifier y)

Let O be a finite set of objects, X the feature space associated with a model
formation function α : O → X, C a set of classes, y : X→ C a classifier, and
γ : O → C the ideal classifier to be approximated by y.

Let X = {x | x = α(o), o ∈ O} be a
::::::::::::
multiset

::::
of

:::::::::::
feature

::::::::::::
vectors and cx = γ(o), o ∈ O.

Then, the true misclassification rate of y(x), denoted Err ∗(y), is defined as follows:

Err ∗(y) =
|{x ∈ X : y(x) 6= cx}|

|X|
=
|{o ∈ O : y(α(o)) 6= γ(o)}|

|O|

Problem:

q Usually the total function γ() is unknown and hence Err ∗(y) is unknown.

Solution:

q Based on a multiset of examples D, estimation of upper and lower bounds for
Err ∗(y) according to some sampling strategy.
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Remarks:

q Alternative to “true misclassification rate” we will also use the term “true misclassification
error” or simply “true error”.

q Since the total function γ() is unknown, cx is not given for all x ∈ X. However, for some
feature vectors x ∈ X we have knowledge about cx, namely for those in the multiset of
examples D.

q If the mapping from feature vectors to classes is not unique, the multiset of examples D is
said to contain (label) noise.
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Remarks: (continued)

q The English word “rate” can denote both the mathematical concept of a flow quantity
(a change of a quantity per time unit) as well as the mathematical concept of a proportion,
percentage, or ratio, which has a stationary (= time-independent) semantics. Note that the
latter semantics is meant here when talking about the misclassification rate.

The German word „Rate“ is often (mis)used to denote the mathematical concept of a
proportion, percentage, or ratio. Taking a precise mathematical standpoint, the correct
German words are „Anteil“ or „Quote“. I.e., the correct translation of misclassification rate is
„Missklassifikationsanteil“, and not „Missklassifikationsrate“.

q Finally, recall from section
::::::::::::::::
Specification

:::
of

::::::::::::
Learning

:::::::::
Tasks in part Introduction the difference

between the following concepts, denoted by glyph variants of the same letter:

x : single feature
x : feature vector
X : feature space
X : multiset of feature vectors

ML:II-115 Machine Learning Basics © STEIN/VÖLSKE/LETTMANN 2022

https://webis.de/downloads/lecturenotes/machine-learning/unit-en-ml-introduction.pdf#feature-vector-set-vs-feature-space


Evaluating Effectiveness
Misclassification Rate (continued)

Instead of defining Err ∗(y) as the ratio of misclassified features vectors in X, we can
define Err ∗(y) as the probability that y misclassifies some x, which depends on the
joint distribution of the feature vectors and classes.
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Evaluating Effectiveness
Misclassification Rate (continued)

Instead of defining Err ∗(y) as the ratio of misclassified features vectors in X, we can
define Err ∗(y) as the probability that y misclassifies some x, which depends on the
joint distribution of the feature vectors and classes.

Definition 9 (Probabilistic Foundation of the True Misclassification Rate)

Let X be a
:::::::::::
feature

::::::::::
space with a finite number of elements, C a set of classes, and

y : X→ C a classifier. Moreover, let Ω be a sample space, which corresponds to a
set O of real-world objects, and P a probability measure defined on P(Ω).

We consider two types of random variables, X : Ω→ X, and C : Ω→ C.

Then p(x, c), p(x, c) := P (X=x,C=c), is the probability of the joint event (1) to get
the vector x ∈ X, and, (2) that the respective object belongs to class c ∈ C. With
p(x, c) the true misclassification rate of y(x) can be expressed as follows:

Err ∗(y) =
∑
x∈X

∑
c∈C

p(x, c) · I6=(y(x), c), with I6=(y(x), c) =

{
0 if y(x) = c

1 otherwise
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Evaluating Effectiveness
Illustration 1: Label Noise

Joint probabilities p(x, c) := P (X=x,C=c) (shading indicates magnitude) :

c1

c|C|

...

x1 ...

(no label noise→ classes are unique)

Err ∗(y) =
∑
x∈X

∑
c∈C

p(x, c) · I6=(y(x), c), with I6=(y(x), c) =

{
0 if y(x) = c

1 otherwise
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Evaluating Effectiveness
Illustration 1: Label Noise (continued)

Joint probabilities p(x, c) := P (X=x,C=c) (shading indicates magnitude) :

c1

c|C|

...

x1 ...

(no label noise→ classes are unique)

Err ∗(y) =
∑
x∈X

∑
c∈C

p(x, c) · I6=(y(x), c), with I6=(y(x), c) =

{
0 if y(x) = c

1 otherwise
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Evaluating Effectiveness
Illustration 1: Label Noise (continued)

Joint probabilities p(x, c) := P (X=x,C=c) (shading indicates magnitude) :

c1

c|C|

...

x1 ...

(label noise→ classes are not unique)

Err ∗(y) =
∑
x∈X

∑
c∈C

p(x, c) · I6=(y(x), c), with I6=(y(x), c) =

{
0 if y(x) = c

1 otherwise
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Evaluating Effectiveness
Illustration 1: Label Noise (continued)

Joint probabilities p(x, c) := P (X=x,C=c) (shading indicates magnitude) :

c1

c|C|

...

x1 ...

(label noise→ classes are not unique)

Err ∗(y) =
∑
x∈X

∑
c∈C

p(x, c) · I6=(y(x), c), with I6=(y(x), c) =

{
0 if y(x) = c

1 otherwise
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Remarks:

q X and C denote (multivariate) random variables with ranges X and C respectively.

X corresponds to a
::::::::
model

:::::::::::::
formation

::::::::::
function α, which returns for a real-world object o ∈ O its

feature vector x, x = α(o).

C corresponds to an
::::::
ideal

::::::::::::
classifier γ, which returns for a real-world object o ∈ O its class c,

c = γ(o).

q X models the fact that the occurrence of a feature vector is governed by a probability
distribution, rendering certain observations more likely than others. Keyword: prior probability
of [observing] x.

Note that the multiset X of feature vectors in the true misclassification rate Err ∗(y) is
governed by the distribution of X: Objects in O that are more likely, but also very similar
objects, will induce the respective multiplicity of feature vectors x in X and hence are
considered with the appropriate weight.

q C models the fact that the occurrence of a class is governed by a probability distribution,
rendering certain classes more likely than others. Keyword: prior probability of c.
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Remarks: (continued)

q The classification of a feature vector x may not be deterministic: different objects in O can be
mapped to the same vector x—but to different classes. Reasons for a nondeterministic class
assignment include: incomplete feature set, imprecision and random errors during feature
measuring, lack of care during data acquisition. Keyword: label noise

q X may not be restricted to a finite set, giving rise to probability density functions (with
continuous random variables) in the place of the probability mass functions (with discrete
random variables). The illustrations in a continuous setting remain basically unchanged,
presupposed a sensible discretization of the feature space X.
[Wikipedia: continuous setting, illustration]
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Remarks: (continued)

q P ( · ) is a probability measure (see section
:::::::::::::
Probability

:::::::::
Basics in part Bayesian Learning) and

its argument is an event. Examples for events are “X=x”, “X=x, C=c”, or “X=x | C=c”.

q p(x, c), p(x), or p(x | c) are examples for a probability mass function, pmf. Its argument is a
realization of a discrete random variable (or several discrete random variables), to which the
pmf assigns a probability, based on a probability measure: p( · ) is defined via P ( · ).
[illustration]

The counterpart of p( · ) for a continuous random variable is called probability density
function, pdf, and is typically denoted by f( · ).

q Since p(x, c) (and similarly p(x), p(x | c), etc.) is defined as P (X=x,C=c), the respective
expressions for p( · ) and P ( · ) can usually be used interchangeably. In this sense we have
two parallel notations, arguing about realizations of random variables and events respectively.

q Let A and B denote two events, e.g., A = “X=x9” and B = “C=c3”. Then the following
expressions are equivalent notations for the probability of the joint event “A and B ” : P (A,B),
P (A ∧B), P (A ∩B).

q I6= is an indicator function that returns 1 if its arguments are unequal (and 0 if its arguments
are equal).
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Evaluating Effectiveness
Illustration 2: Bayes [Optimal] Classifier and Bayes Error

The Bayes classifier returns for x the class with the highest [posterior] probability:

c1

ck

...

x1 ...
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Evaluating Effectiveness
Illustration 2: Bayes [Optimal] Classifier and Bayes Error (continued)

The Bayes classifier returns for x the class with the highest [posterior] probability:

c1

ck

...

x1 ...
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Evaluating Effectiveness
Illustration 2: Bayes [Optimal] Classifier and Bayes Error (continued)

The Bayes classifier returns for x the class with the highest [posterior] probability:

c1

ck

...

x1 ...
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Evaluating Effectiveness
Illustration 2: Bayes [Optimal] Classifier and Bayes Error (continued)

The Bayes classifier returns for x the class with the highest [posterior] probability:

c1

ck

...

x1 ...

Bayes classifier: y∗(x) = argmax
c∈C

p(c,x) = argmax
c∈C

p(c | x)
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Evaluating Effectiveness
Illustration 2: Bayes [Optimal] Classifier and Bayes Error (continued)

The Bayes classifier returns for x the class with the highest [posterior] probability:

c1

ck

...

x1 ...

Bayes classifier: y∗(x) = argmax
c∈C

p(c,x) = argmax
c∈C

p(c | x)

Bayes error: Err ∗ =
∑
x∈X

∑
c∈C

p(x, c) · I6=(y∗(x), c) =
∑
x∈X

(1−max
c∈C
{p(c,x)})
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Remarks (Bayes classifier):

q The Bayes classifier (also: Bayes optimal classifier) maps each feature vector x to the
highest-probability class c according to the true joint probability distribution p(c,x) that
generates the data.

q The Bayes classifier incurs an error—the Bayes error—on feature vectors that have more
than one possible class assignment with non-zero probability. This may be the case when the
class assignment depends on additional (unobserved) features not recorded in x, or when
the relationship between objects and classes is inherently stochastic.
[Goodfellow et al. 2016, p.114] [Bishop 2006, p.40] [Daumé III 2017, ch.2] [Hastie et al. 2009, p.21]

q The Bayes error hence is the theoretically minimal error that can be achieved on average for
a classifier learned from a multiset of examples D. It is also referred to as Bayes rate,
irreducible error, or unavoidable error, and it forms a lower bound for the error of any model
created without knowledge of the probability distribution p(c,x).

q Prerequisite to construct the Bayes classifier and to compute its error is knowledge about the
joint probabilities, p(c,x) or p(c | x). In this regard the size of the available data, D, decides
about the possibility and the quality for the estimation of the probabilities.

q Do not mix up the following two issues: (1) The joint probabilities cannot be reliably
estimated, (2) the joint probabilities can be reliably estimated but entail an unacceptably large
Bayes error. The former issue can be addressed by enlarging D. The latter issue indicates
the deficiency of the features, which can neither be repaired with more data nor with a (very
complex) model function, but which requires the identification of new, more effective features:
the model formation process is to be reconsidered.
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Evaluating Effectiveness
Illustration 3: Marginal and Conditional Distributions

Joint probabilities p(x, c) := P (X=x,C=c) :

p(x9, c3)
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Evaluating Effectiveness
Illustration 3: Marginal and Conditional Distributions (continued)

Marginal probabilities p(x) := P (X=x) :

p(x9, c3)

p(x1) p(x2) ...
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Evaluating Effectiveness
Illustration 3: Marginal and Conditional Distributions (continued)

Marginal probabilities p(c) := P (C=c) :

p(x9, c3)

p(c1
)

p(c2
)

...
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Evaluating Effectiveness
Illustration 3: Marginal and Conditional Distributions (continued)

Probabilities of the classes c under feature vector (the condition) x4,
denoted by p(c | x4) := P (C=c | X=x4) ≡ PX=x4(C=c) :

p(x9, c3)

p(c | x4)
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Evaluating Effectiveness
Illustration 3: Marginal and Conditional Distributions (continued)

Probabilities of the feature vectors x under class (the condition) c5,
denoted by p(x | c5) := P (X=x | C=c5) ≡ PC=c5(X=x) :

p(x9, c3)

p(x | c5)
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Evaluating Effectiveness
Illustration 3: Marginal and Conditional Distributions (continued)

Overview:

p(x9, c3)

p(x1) p(x2) ...

p(c1
)

p(c2
)

...

p(c | x4)

p(x | c5)
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Remarks:

q p(c | x) := P (X=x,C=c)/P (X=x) = P (C=c | X=x) ≡ PX=x(C=c)

p(c | x) is called (feature-)conditional class probability function, CCPF.

In the illustration: Summation over the c ∈ C of the fourth column yields the marginal
probability p(x4) := P (X=x4). p(c | x4) gives the probabilities of the c (consider the column)
under feature vector x4 (= having normalized by p(x4)), i.e., p(x4, c)/p(x4).

q p(x | c) := P (X=x,C=c)/P (C=c) = P (X=x | C=c) ≡ PC=c(X=x)

p(x | c) is called class-conditional (feature) probability function, CPF.

In the illustration: Summation / integration over the x ∈ X of the fifth row yields the marginal
probability p(c5) := P (C=c5). p(x | c5) gives the probabilities of the x (consider the row) under
class c5 (= having normalized by p(c5)), i.e., p(x, c5)/p(c5).

q p(x, c) = p(c,x) = p(c | x) · p(x), where p(x) is the prior probability for event X=x, and p(c | x)
is the probability for event C=c given event X=x. Likewise, p(x, c) = p(x | c) · p(c), where p(c)
is the prior probability for event C=c, and p(x | c) is the probability for event X=x given
event C=c.

q Let the events X=x and C=c have occurred, and, let x be known and c be unknown. Then,
p(x | c) is called likelihood (for event X=x given event C=c). [Mathworld]

In the Bayes classification setting p(c | x) is called “posterior probability”, i.e., the probability
for c after we know that x has occurred.
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Evaluating Effectiveness
Illustration 4: Probability Distribution in a Regression Setting
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}
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Evaluating Effectiveness
Illustration 4: Probability Distribution in a Regression Setting (continued)
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Joint and marginal probability functions p(x, c), p(x), and p(c) :

p(x2)p(x1) ...

p(c1
)

p(c2
)
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Evaluating Effectiveness
Illustration 4: Probability Distribution in a Regression Setting (continued)
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Joint and marginal probability functions p(x, c), p(x), and p(c) :

p(x2)p(x1) ...

p(c1
)

p(c2
)
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Evaluating Effectiveness
Illustration 4: Probability Distribution in a Regression Setting (continued)
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Evaluating Effectiveness
Illustration 4: Probability Distribution in a Regression Setting (continued)
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Optimum hyperplane classifier:

p(x2)p(x1) ...

p(c1
)

p(c2
)

p(x2) c2 c1

ML:II-142 Machine Learning Basics © STEIN/VÖLSKE/LETTMANN 2022



Evaluating Effectiveness
Illustration 4: Probability Distribution in a Regression Setting (continued)
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Class-conditional probability functions p(x | c1) and p(x | c2) :

p(x2)p(x1) ...

p(c1
)

p(c2
)

p(x2) c2 c1

ML:II-143 Machine Learning Basics © STEIN/VÖLSKE/LETTMANN 2022



Remarks:

q The illustration shows a classification task without label noise: each feature vector x belongs
to exactly one class. Moreover, the classification task can be reduced to solving a regression
problem (e.g., via the

::::::
LMS

::::::::::::
algorithm). Even more, for perfect classification the regression

function needs to define a straight line only. Keyword: linear separability

q Solving classification tasks via regression requires a feature space with a particular structure.
Here we assume that the feature space is a vector space over the scalar field of real numbers
R, equipped with the dot product.

q Actually, the two figures illustrate the discriminative approach (top) and the generative
approach (bottom) to classification. See section

::::::::::::
Elements

::::
of

:::::::::::
Machine

::::::::::::
Learning in part

Introduction.
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Evaluating Effectiveness
Estimating Error Bounds

Experiment setting:

q D = {(x1, c1), . . . , (xn, cn)} ⊆ X × C is a multiset of examples.

q y(x) is the classifier trained on D.

q The true error Err ∗(y) measures the performance of y(x) on X (“in the wild”).

q What can be said about the true error Err ∗(y)?
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Evaluating Effectiveness
Estimating Error Bounds (continued)

Experiment setting:

q D = {(x1, c1), . . . , (xn, cn)} ⊆ X × C is a multiset of examples.

q y(x) is the classifier trained on D.

q The true error Err ∗(y) measures the performance of y(x) on X (“in the wild”).

q What can be said about the true error Err ∗(y)?

The following relations typically hold:

Underestimation (likely) Overestimation (unlikely)

Training error Cross-validation error Holdout error True error

Err tr(y) < Err cv(y, k) . Err (y,Dtest) < Err ∗(y) < Err cv(y, k) . Err (y,Dtest)
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Evaluating Effectiveness
Estimating Error Bounds (continued)

Experiment setting:

q D = {(x1, c1), . . . , (xn, cn)} ⊆ X × C is a multiset of examples.

q y(x) is the classifier trained on D.

q The true error Err ∗(y) measures the performance of y(x) on X (“in the wild”).

q What can be said about the true error Err ∗(y)?

The following relations typically hold:

Underestimation (likely) Overestimation (unlikely)

Training error Cross-validation error Holdout error True error

Err tr(y) < Err cv(y, k) . Err (y,Dtest) < Err ∗(y) < Err cv(y, k) . Err (y,Dtest)

��
|D| → |X|
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Evaluating Effectiveness
Estimating Error Bounds (continued)

Experiment setting:

q D = {(x1, c1), . . . , (xn, cn)} ⊆ X × C is a multiset of examples.

q y(x) is the classifier trained on D.

q The true error Err ∗(y) measures the performance of y(x) on X (“in the wild”).

q What can be said about the true error Err ∗(y)?

The following relations typically hold:

Underestimation (likely) Overestimation (unlikely)

Training error Cross-validation error Holdout error True error

Err tr(y) < Err cv(y, k) . Err (y,Dtest) < Err ∗(y) < Err cv(y, k) . Err (y,Dtest)

� �
difference quantifies overfitting
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Remarks:

q Relating the true error Err ∗(y) to the aforementioned error assessments Err tr(y), Err cv(y, k),
and Err (y,Dtest) is not straightforward but requires an in-depth analysis of the sampling
strategy, the sample size D, and the set X of feature vectors, among others.

q The additional argument in the definitions of the error functions, k and Dtest respectively, are
necessary to completely specify the error computation. The set D is not specified as an
argument since it is an integral and constant parameter of the learning procedure
underlying y(x).
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Evaluating Effectiveness
Training Error

Dtr

D→  y(x)

→  Err tr(y )

Evaluation setting:

q No test set.

q y(x) is the classifier trained on Dtr = D.

Training error of y(x) :

q Err tr (y) =
|{(x, c) ∈ Dtr : y(x) 6= c}|

|Dtr |

= misclassification rate of y(x) on the training set.
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Remarks:

q The estimation of Err tr(y) is based on y(x) and tests against Dtr = D. I.e., the same
examples that are used for training y(x) are also used to test y(x). Hence Err tr(y) quantifies
the memorization power of y(x) but not its generalization power.

Consider the extreme case: If y(x) stored D during “training” into a hashtable (key ∼ x,
value ∼ c), then Err tr(y) would be zero, which would tell us nothing about the failure of y(x) in
the wild.

q Err tr(y) is an optimistic estimation, i.e., it is constantly lower compared to the (unknown) true
error Err ∗(y). With D = X the training error Err tr(y) becomes the true error Err ∗(y).

q Note that the above issues relate to the meaningfulness of Err tr(y) as an error estimate—and
not to the classifier y(x).

Obviously, to get the maximum out of the data when training y(x), D must be exploited
completely: A classifier y(x) trained on D will on average outperform every classifier y′(x)
trained on a subset of D.
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Evaluating Effectiveness
Holdout Error

Dtr

D→  y(x)

→  Err (y’ ,  Dtest)

→  y’(x)

Dtest

Evaluation setting:

q Dtest ⊂ D is the test set.

q y(x) is the classifier trained on D.

q y′(x) is the classifier trained on Dtr = D \Dtest .

Holdout error of y(x) :

q Err (y,Dtest) =
|{(x, c) ∈ Dtest : y′(x) 6= c}|

|Dtest |

= misclassification rate of y′(x) on the test set.
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Evaluating Effectiveness
Holdout Error (continued)

1. Training (D, η)

1. initialize_random_weights(w), t = 0

2. REPEAT
...

10. UNTIL(convergence(D, y( · ), t)

; y(x)

; Err tr (y) (not used)

2. Training (Dtr , η)

1. initialize_random_weights(w), t = 0

2. REPEAT
...

10. UNTIL(convergence(Dtr , y
′( · ), t)

; y′(x)

; Err tr (y
′)

3. Test (Dtest , y
′( · ) ; Err (y,Dtest)
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Evaluating Effectiveness
Holdout Error (continued)

1. Training (D, η)

1. initialize_random_weights(w), t = 0

2. REPEAT
...

10. UNTIL(convergence(D, y( · ), t)

; y(x)

; Err tr (y) (not used)

2. Training (Dtr , η)

1. initialize_random_weights(w), t = 0

2. REPEAT
...

10. UNTIL(convergence(Dtr , y
′( · ), t)

; y′(x)

; Err tr (y
′)

3. Test (Dtest , y
′( · ) ; Err (y,Dtest)
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Evaluating Effectiveness
Holdout Error (continued)

1. Training (D, η)

1. initialize_random_weights(w), t = 0

2. REPEAT
...

10. UNTIL(convergence(D, y( · ), t)

; y(x)

; Err tr (y) (not used)

2. Training (Dtr , η)

1. initialize_random_weights(w), t = 0

2. REPEAT
...

10. UNTIL(convergence(Dtr , y
′( · ), t)

; y′(x)

; Err tr (y
′)

3. Test (Dtest , y
′( · ) ; Err (y,Dtest)
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Remarks:

q The difference between the training error, Err tr(y) or Err tr(y
′), and the holdout error,

Err (y,Dtest), quantifies the severity of a possible
::::::::::::
overfitting.

q When splitting D into Dtr and Dtest one has to ensure that the underlying distribution is
maintained, i.e., the examples have to be drawn independently and according to P . If this
condition is not fulfilled then Err (y,Dtest) cannot be used as an estimation of Err ∗(y).
Keyword: sample selection bias

q An important aspect of the underlying data distribution specific to classification problems is
the relative frequency of the classes. A sample Dtr ⊂ D is called a (class-)stratified sample of
D if it has the same class frequency distribution as D, i.e.:

∀ci ∈ C :
|{(x, c) ∈ Dtr : c = ci}|

|Dtr |
≈ |{(x, c) ∈ D : c = ci}|

|D|

q Dtr and Dtest should have similar sizes. A typical value for splitting D into training set Dtr and
test set Dtest is 2:1.

q The fact that random variables are both independent of each other and identically distributed
is often abbreviated to “i.i.d.”

q Regarding the notation: We will us the prime symbol »’« to indicate whether a classifier is
trained by withholding a test set. E.g., y′(x) and y′i(x) denote classifiers trained by withholding
the test sets Dtest and Dtest i respectively.
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Evaluating Effectiveness
k-Fold Cross-Validation

Dtr

D→  y(x)

→  y’k(x),  Err (y’k, Dtestk
)

→  y’1(x),  Err (y’1, Dtest1
)

1 k ...2

...

1 k ...2

1 k ...2 Dtest

...
Evaluation setting:

q k test sets Dtest i by splitting D into k disjoint sets of similar size.

q y(x) is the classifier trained on D.

q y′i(x), i = 1, . . . , k, are the classifiers trained on Dtr = D \Dtest i.
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Evaluating Effectiveness
k-Fold Cross-Validation (continued)

Dtr

D→  y(x)

→  y’k(x),  Err (y’k, Dtestk
)

→  y’1(x),  Err (y’1, Dtest1
)

1 k ...2

...

1 k ...2

1 k ...2 Dtest

...
Evaluation setting:

q k test sets Dtest i by splitting D into k disjoint sets of similar size.

q y(x) is the classifier trained on D.

q y′i(x), i = 1, . . . , k, are the classifiers trained on Dtr = D \Dtest i.

Cross-validation error of y(x) :

q
Err cv(y, k) = 1

k

k∑
i=1

|{(x, c) ∈ Dtest i : y′i(x) 6= c}|
|Dtest i|

= averaged misclassification rate of the y′i(x) on the k test sets.
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Remarks:

q For large k the set Dtr = D \Dtest i is of similar size as D. Hence Err (yi, Dtest i)—as well as
Err cv(y, k)—is close to Err ∗(y), since Err ∗(y) is the error of the classifier y trained on D.

q n-fold cross-validation (aka “leave one out”) is the special case with k = n. Obviously
singleton test sets (|Dtest i| = 1) are never stratified since they contain a single class only.

q n-fold cross-validation is a special case of exhaustive cross-validation methods, which learn
and test on all possible ways to divide the original sample into a training and a validation set.
[Wikipedia]

q Instead of splitting D into disjoint subsets through sampling without replacement, it is also
possible to generate folds by sampling with replacement; this results in a bootstrap estimate
for Err ∗(y) (see section

:::::::::::::
Ensemble

::::::::::::
Methods

::
>

:::::::::::::
Bootstrap

:::::::::::::::::
Aggregating in part Ensemble and

Meta). [Wikipedia]
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Evaluating Effectiveness
Comparing Model Variants

Experiment setting:

q D = {(x1, c1), . . . , (xn, cn)} ⊆ X × C is a multiset of examples.

q m hyperparameter values π1, π2, . . . , πm,

q yπ1(x), yπ2(x), . . . , yπm(x) are the classifiers trained on D.

q Which is the most effective among the m classifiers yπl(x)?
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Remarks:

q In general, a hyperparameter π (with values π1, π2, . . . , πm) controls the learning process for a
model’s parameters, but is itself not learned.

A regime where knowledge (such as hyperparameter settings) about a machine learning
process is learned is called meta learning.

q Examples for hyperparameters in different kinds of model functions:

– learning rate η in regression-based models fit via gradient descent

– type of
::::::::::::::::::
regularization

::::::
loss used, e.g., R||~w||22 or R||~w||1

– the term λ controlling the weighting of regularization loss and goodness-of-fit loss

– number of hidden layers and the number of units per layer in
:::::::::::::
multilayer

::::::::::::::::
perceptrons

– choice of
::::::::::
impurity

:::::::::::
function and

:::::::::
pruning

:::::::::::
strategy in decision trees

– architectural choices in deep-learning based models

q Different search strategies may be combined with cross-validation to find an optimal
combination of hyperparameters for a given dataset and family of model functions.
Depending on the size of the hyperparameter space, appropriate strategies can include both
exhaustive grid search and approximation methods (metaheuristics) such as tabu search,
simulated annealing, or evolutionary algorithms.
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Evaluating Effectiveness
Model Selection: Single Validation Set

Dtr

D→  y(x)

Dval

→  π*

→  Err (yπ*,  Dtest)

→  y’π1
(x) , ... , y’πm

(x)

Dtest

→  yπ*(x)

Evaluation setting:

q Dtest ⊂ D is the test set.

q Dval ⊂ (D \Dtest) is the validation set.

q y′πl(x), l = 1, . . . ,m, are the classifiers trained on Dtr = D \ (Dtest ∪Dval).
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Evaluating Effectiveness
Model Selection: Single Validation Set (continued)

Dtr

D→  y(x)

Dval

→  π*

→  Err (yπ*,  Dtest)

→  y’π1
(x) , ... , y’πm

(x)

Dtest

→  yπ*(x)

Evaluation setting:

q Dtest ⊂ D is the test set.

q Dval ⊂ (D \Dtest) is the validation set.

q y′πl(x), l = 1, . . . ,m, are the classifiers trained on Dtr = D \ (Dtest ∪Dval).

q π∗ = argmin
πl, l=1,...,m

|{(x, c) ∈ Dval : y′πl(x) 6= c}|
|Dval |

...
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Evaluating Effectiveness
Model Selection: Single Validation Set (continued)

Dtr

D→  y(x)

Dval

→  π*

→  Err (yπ*,  Dtest)

→  y’π1
(x) , ... , y’πm

(x)

Dtest

→  yπ*(x)

Evaluation setting:
...

q yπ∗(x) is the classifier trained on D.

q y′π∗(x) is the classifier trained on Dtr = D \Dtest .

Holdout error of yπ∗(x) :

q Err (yπ∗, Dtest) =
|{(x, c) ∈ Dtest : y′π∗(x) 6= c}|

|Dtest |

= misclassification rate of y′π∗(x) on the test set.
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Evaluating Effectiveness
Model Selection: k validation sets

Dtr

D→  y(x)

→  y’1π1
(x) , ... , y’1πm

(x)

→  y’kπ1
(x) , ... 

Dval

→  Err (yπ*,  Dtest)

1  k...2

...

1  k...2

1  k...2 Dtest

... π*

→  yπ*(x)

Evaluation setting:

q Dtest ⊂ D is the test set.

q k validation sets Dval i by splitting D \Dtest into k disjoint sets of similar size.

q y′iπl
(x), i = 1, . . . , k, l = 1, . . . ,m, are the k ·m classifiers trained on

Dtr = D \ (Dtest ∪Dval i).
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Evaluating Effectiveness
Model Selection: k validation sets (continued)

Dtr

D→  y(x)

→  y’1π1
(x) , ... , y’1πm

(x)

→  y’kπ1
(x) , ... 

Dval

→  Err (yπ*,  Dtest)

1  k...2

...

1  k...2

1  k...2 Dtest

... π*

→  yπ*(x)

Evaluation setting:

q Dtest ⊂ D is the test set.

q k validation sets Dval i by splitting D \Dtest into k disjoint sets of similar size.

q y′iπl
(x), i = 1, . . . , k, l = 1, . . . ,m, are the k ·m classifiers trained on

Dtr = D \ (Dtest ∪Dval i).

q π∗ = argmin
πl, l=1,...,m

k∑
i=1

|{(x, c) ∈ Dval i : y′iπl
(x) 6= c}|

|Dval i|
...
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Evaluating Effectiveness
Model Selection: k validation sets (continued)

Dtr

D→  y(x)

→  y’1π1
(x) , ... , y’1πm

(x)

→  y’kπ1
(x) , ... 

Dval

→  Err (yπ*,  Dtest)

1  k...2

...

1  k...2

1  k...2 Dtest

... π*

→  yπ*(x)

Evaluation setting:
...

q yπ∗(x) is the classifier trained on D,

q y′π∗(x) is the classifier trained on Dtr = D \Dtest .

Holdout error of yπ∗(x) : computation as before.
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Remarks:

q The validation set is also called “development set”.
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Evaluating Effectiveness
Misclassification Costs

Use of a cost measure for the misclassification of a feature vector x ∈ X in a wrong
class c′ instead of in the correct class c :

cost(c′, c)

{
≥ 0 if c′ 6= c

= 0 otherwise

Holdout error of y based on misclassification costs:

Err cost(y,Dtest) =
1

|Dtest |
·
∑

(x,c)∈Dtest

cost(y(x), c)
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Remarks:

q The true error, Err ∗(y), is a special case of Err cost(y) with cost(c′, c) = 1 for c′ 6= c. Consider in
this regard the notation of Err ∗(y) in terms of the function I(y(x), c):

Err ∗(y) =
|{x ∈ X : y(x) 6= c(x)}|

|X|
=
∑
x∈X

I(y(x), c)
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