
Chapter IR:II
II. Indexing

q Indexing Basics
q Inverted Index
q Query Processing I
q Query Processing II
q Index Construction
q Index Compression
q Size Estimation

IR:II-1 Indexing © HAGEN/POTTHAST/STEIN 2023

Indexing Basics

Definition 1 (Index [ANSI/NISO 1997])

An index is a systematic guide designed to indicate topics or features of
documentary units as index terms in order to facilitate their retrieval.

The function of an index is to provide users with an effective means for locating
documentary units relevant to their information needs in answer to queries.

IR:II-3 Indexing © HAGEN/POTTHAST/STEIN 2023

https://web.archive.org/web/20130622032358/http://www.niso.org/publications/tr/tr02.pdf

Indexing Basics

Definition 1 (Index [ANSI/NISO 1997])

An index is a systematic guide designed to indicate topics or features of
documentary units as index terms in order to facilitate their retrieval.

The function of an index is to provide users with an effective means for locating
documentary units relevant to their information needs in answer to queries.

IR:II-4 Indexing © HAGEN/POTTHAST/STEIN 2023

https://web.archive.org/web/20130622032358/http://www.niso.org/publications/tr/tr02.pdf

Indexing Basics
Querying an Index

Queries are users’ formulations of information needs in a search engine’s language:

q Keyword queries

q Question queries

q Query by example

IR:II-21 Indexing © HAGEN/POTTHAST/STEIN 2023

Chapter IR:II
II. Indexing

q Indexing Basics
q Inverted Index
q Query Processing I
q Query Processing II
q Index Construction
q Index Compression
q Size Estimation

IR:II-22 Indexing © HAGEN/POTTHAST/STEIN 2023

Inverted Index
Term-Document Matrix

d1 d2 d3 d4 d5 · · ·
t1 1 1 0 0 0

t2 1 1 0 1 0

t3 1 1 0 1 1

t4 0 1 0 0 0

t5 1 0 0 0 0
... . . .

IR:II-23 Indexing © HAGEN/POTTHAST/STEIN 2023

Inverted Index
Term-Document Matrix

d1 d2 d3 d4 d5 · · ·
t1 1 1 0 0 0

t2 1 1 0 1 0

t3 1 1 0 1 1

t4 0 1 0 0 0

t5 1 0 0 0 0
... . . .

q Documents D

d1 Antony and Cleopatra

d2 Julius Caesar
d3 The Tempest
d4 Hamlet
d5 Othello

q Index terms T

t1 Antony
t2 Brutus
t3 Caesar
t4 Calpurnia
t5 Cleopatra

IR:II-24 Indexing © HAGEN/POTTHAST/STEIN 2023

http://shakespeare.mit.edu/cleopatra/full.html
http://shakespeare.mit.edu/julius_caesar/full.html
http://shakespeare.mit.edu/tempest/full.html
http://shakespeare.mit.edu/hamlet/full.html
http://shakespeare.mit.edu/othello/full.html

Inverted Index
Term-Document Matrix

d1 d2 d3 d4 d5 · · ·
t1 1 1 0 0 0

t2 1 1 0 1 0

t3 1 1 0 1 1

t4 0 1 0 0 0

t5 1 0 0 0 0
... . . .

q Documents D

d1 Antony and Cleopatra

d2 Julius Caesar
d3 The Tempest
d4 Hamlet
d5 Othello

q Index terms T

t1 Antony
t2 Brutus
t3 Caesar
t4 Calpurnia
t5 Cleopatra

IR:II-25 Indexing © HAGEN/POTTHAST/STEIN 2023

http://shakespeare.mit.edu/cleopatra/full.html
http://shakespeare.mit.edu/julius_caesar/full.html
http://shakespeare.mit.edu/tempest/full.html
http://shakespeare.mit.edu/hamlet/full.html
http://shakespeare.mit.edu/othello/full.html

Inverted Index
Term-Document Matrix

d1 d2 d3 d4 d5 · · ·
t1 1 1 0 0 0

t2 1 1 0 1 0

t3 1 1 0 1 1

t4 0 1 0 0 0

t5 1 0 0 0 0
... . . .

q Documents D

d1 Antony and Cleopatra

d2 Julius Caesar
d3 The Tempest
d4 Hamlet
d5 Othello

q Index terms T

t1 Antony
t2 Brutus
t3 Caesar
t4 Calpurnia
t5 Cleopatra

IR:II-26 Indexing © HAGEN/POTTHAST/STEIN 2023

http://shakespeare.mit.edu/cleopatra/full.html
http://shakespeare.mit.edu/julius_caesar/full.html
http://shakespeare.mit.edu/tempest/full.html
http://shakespeare.mit.edu/hamlet/full.html
http://shakespeare.mit.edu/othello/full.html

Inverted Index
Term-Document Matrix

d1 d2 d3 d4 d5 · · ·
t1 382 128 0 0 0

t2 4 379 0 1 0

t3 289 272 0 2 1

t4 0 16 0 0 0

t5 271 0 0 0 0
... . . .

q Documents D

d1 Antony and Cleopatra

d2 Julius Caesar
d3 The Tempest
d4 Hamlet
d5 Othello

q Index terms T

t1 Antony
t2 Brutus
t3 Caesar
t4 Calpurnia
t5 Cleopatra

IR:II-27 Indexing © HAGEN/POTTHAST/STEIN 2023

http://shakespeare.mit.edu/cleopatra/full.html
http://shakespeare.mit.edu/julius_caesar/full.html
http://shakespeare.mit.edu/tempest/full.html
http://shakespeare.mit.edu/hamlet/full.html
http://shakespeare.mit.edu/othello/full.html

Inverted Index
Term-Document Matrix

d1 d2 d3 d4 d5 · · ·
t1 w1,1 w1,2 w1,3 w1,4 w1,5

t2 w2,1 w2,2 w2,3 w2,4 w2,5

t3 w3,1 w3,2 w3,3 w3,4 w3,5

t4 w4,1 w4,2 w4,3 w4,4 w4,5

t5 w5,1 w5,2 w5,3 w5,4 w5,5
... . . .

q Documents D

d1 Antony and Cleopatra

d2 Julius Caesar
d3 The Tempest
d4 Hamlet
d5 Othello

q Index terms T

t1 Antony
t2 Brutus
t3 Caesar
t4 Calpurnia
t5 Cleopatra

IR:II-28 Indexing © HAGEN/POTTHAST/STEIN 2023

http://shakespeare.mit.edu/cleopatra/full.html
http://shakespeare.mit.edu/julius_caesar/full.html
http://shakespeare.mit.edu/tempest/full.html
http://shakespeare.mit.edu/hamlet/full.html
http://shakespeare.mit.edu/othello/full.html

Inverted Index
Term-Document Matrix

d1 d2 d3 d4 d5 · · ·
t1 w1,1 w1,2 w1,3 w1,4 w1,5

t2 w2,1 w2,2 w2,3 w2,4 w2,5

t3 w3,1 w3,2 w3,3 w3,4 w3,5

t4 w4,1 w4,2 w4,3 w4,4 w4,5

t5 w5,1 w5,2 w5,3 w5,4 w5,5
... . . .

q Documents D

d1 Antony and Cleopatra

d2 Julius Caesar
d3 The Tempest
d4 Hamlet
d5 Othello

q Index terms T

t1 Antony
t2 Brutus
t3 Caesar
t4 Calpurnia
t5 Cleopatra

q Term Weights
– Boolean
– Term frequency
– . . .

IR:II-29 Indexing © HAGEN/POTTHAST/STEIN 2023

http://shakespeare.mit.edu/cleopatra/full.html
http://shakespeare.mit.edu/julius_caesar/full.html
http://shakespeare.mit.edu/tempest/full.html
http://shakespeare.mit.edu/hamlet/full.html
http://shakespeare.mit.edu/othello/full.html

Inverted Index
Term-Document Matrix

d1 d2 d3 d4 d5 · · ·
t1 w1,1 w1,2 w1,3 w1,4 w1,5

t2 w2,1 w2,2 w2,3 w2,4 w2,5

t3 w3,1 w3,2 w3,3 w3,4 w3,5

t4 w4,1 w4,2 w4,3 w4,4 w4,5

t5 w5,1 w5,2 w5,3 w5,4 w5,5
... . . .

Observations:

q Most retrieval models induce a term-document matrix by computing term
weights wi,j for each pair of term ti 2 T and document dj 2 D.

q Query-independent computations that depend only on D are done offline.

q Online, for a query q, the required term weights are looked up to score
documents.

IR:II-30 Indexing © HAGEN/POTTHAST/STEIN 2023

Inverted Index
Term-Document Matrix

d1 d2 d3 d4 d5 · · ·
t1 w1,1 w1,2 w1,3 w1,4 w1,5

t2 w2,1 w2,2 w2,3 w2,4 w2,5

t3 w3,1 w3,2 w3,3 w3,4 w3,5

t4 w4,1 w4,2 w4,3 w4,4 w4,5

t5 w5,1 w5,2 w5,3 w5,4 w5,5
... . . .

Observations:

q The size of the term-document matrix is |T | · |D|.

q The term-document matrix is sparse: the vast majority of term weights are 0.

q Therefore, most of the storage space required for the full matrix is wasted.

q Using a sparse-matrix representation yields significant space savings.

‹ An inverted index efficiently encodes a sparse term-document matrix.

IR:II-31 Indexing © HAGEN/POTTHAST/STEIN 2023

Inverted Index
Data Structure

T ! Postings (Posting Lists, Postlists)
t1 ! d1, w1,1 d2, w1,2

t2 ! d1, w2,1 d2, w2,2 d4, w2,4

t3 ! d1, w3,1 d2, w3,2 d4, w3,4 d5, w3,5

t4 ! d2, w4,2

t5 ! d1, w5,1
...

An index is implemented as a multimap (i.e., a
::::::::
hash

::::::::
table with multiple values).

Components of an externalized implementation:

q Term vocabulary file
Lookup table which maps terms ti 2 T to the start of their posting list in the postings file.

q Postings file(s)
File(s) that store posting lists on disk.

q Index entries di, [. . .] , so-called postings

IR:II-32 Indexing © HAGEN/POTTHAST/STEIN 2023

https://en.wikipedia.org/wiki/Multimap
https://webis.de/downloads/lecturenotes/https://webis.de/lecturenotes.html#unit-de-hash-tables
https://www.merriam-webster.com/dictionary/posting

Inverted Index
Data Structure

T ! Postings (Posting Lists, Postlists)
t1 ! d1, w1,1 d2, w1,2

t2 ! d1, w2,1 d2, w2,2 d4, w2,4

t3 ! d1, w3,1 d2, w3,2 d4, w3,4 d5, w3,5

t4 ! d2, w4,2

t5 ! d1, w5,1
...

An index is implemented as a multimap (i.e., a
::::::::
hash

::::::::
table with multiple values).

Design choices:

q Information stored in a posting di, [. . .] .

q Ordering of each term’s posting list.

q Encoding and compression techniques for further space savings.

q Physical implementation details, such as external memory and distribution.

IR:II-33 Indexing © HAGEN/POTTHAST/STEIN 2023

https://en.wikipedia.org/wiki/Multimap
https://webis.de/downloads/lecturenotes/https://webis.de/lecturenotes.html#unit-de-hash-tables

Inverted Index
Posting

Given term t and document d, their posting may include the following:

<document> [<weights>] [<positions>] ...

<document>:

q Reference to the document d in which term t occurs (or to which it applies).

<weights>:

q Term weight w for term t in document d.

q Often, only basic term weights are stored (e.g., term frequency tf (t, d)).
Storing model-specific weights saves runtime at the expense of flexibility.

<positions>:

q Term positions within the document, e.g., term, sentence, page, chapter, etc.

q Field information, e.g., title, author, introduction, etc.
IR:II-34 Indexing © HAGEN/POTTHAST/STEIN 2023

Inverted Index
Posting

Two special-purpose entries are distinguished:

... [<list length>] ... [<skip pointer>]

<list length>:

q Added to the first entry of the posting list of a term t.

q Stores the length of the posting list.

q What does the length of a posting list indicate?

<skip pointer>:

q Used to implement a skip list in a term’s posting list, when ordered by ID.

q Allows for random access to postings in O(log df (t,D)).

q An effective amount of skip entries has been found to be
p

df (t,D).
First entry of a posting list, and then at random (or regular) intervals.

IR:II-35 Indexing © HAGEN/POTTHAST/STEIN 2023

https://en.wikipedia.org/wiki/Skip_list

Inverted Index
Posting

Two special-purpose entries are distinguished:

... [<list length>] ... [<skip pointer>]

<list length>:

q Added to the first entry of the posting list of a term t.

q Stores the length of the posting list.

q Equals the number of documents containing t (document frequency df (t,D)).

<skip pointer>:

q Used to implement a skip list in a term’s posting list, when ordered by ID.

q Allows for random access to postings in O(log df (t,D)).

q An effective amount of skip entries has been found to be
p

df (t,D).
First entry of a posting list, and then at random (or regular) intervals.

IR:II-36 Indexing © HAGEN/POTTHAST/STEIN 2023

https://en.wikipedia.org/wiki/Skip_list

Inverted Index
Posting List, Postlist

Example for two posting lists, where for term ti postings k, tf (ti, dk) are stored:

T Postings
...
ti 2, 4 4, 9 8, 2 16, 1 19, 7 23, 5 28, 6 41, 8 50, 6 77, 8 . . .

tj 1, 1 2, 3 3, 5 5, 2 8, 17 41, 6 51, 5 60, 5 71, 3 77, 2 . . .
...

Ordering:

q by document identifier. Problem: “good” documents randomly distributed.

q by document quality. Problem: index updates more complicated.

q by term weight. Problem: no canonical order across rows; skip lists useless.

Compression:

q The size of an index is in O(|D|), where |D| denotes the disk size of D.

q Posting lists can be effectively compressed with tailored techniques.

IR:II-37 Indexing © HAGEN/POTTHAST/STEIN 2023

Remarks:

q The term “inverted index” is redundant: “index” already denotes the structure in which terms
are assigned to the (parts of) documents in which they occur. Better suited, but less
frequently used, is “inverted file”, which expresses that a (document) file is “inverted” to form
an index. So instead of assigning terms to documents, an index assigns documents to terms.

q A trade-off must be made between the amount of information stored in a posting and the time
required to process a post list. The more information stored in a posting, the more has to be
loaded into memory and decoded as the posting list is traversed.

q A skip entry can contain more than one pointer, so skip steps of different lengths are possible.

q Depending on the search domain, it may be beneficial to create more than one index with
different properties.

IR:II-38 Indexing © HAGEN/POTTHAST/STEIN 2023

Chapter IR:II
II. Indexing

q Indexing Basics
q Inverted Index
q Query Processing I
q Query Processing II
q Index Construction
q Index Compression
q Size Estimation

IR:II-39 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing I
Retrieval Types

Query processing can be based on two basic approaches:

q Set retrieval
A query induces a subset of the indexed documents which is considered relevant.
Important applications: e-discovery, patent search, systematic reviews.

q Ranked retrieval
A query induces a ranking among all indexed documents in descending order of relevance.

Ranked retrieval is the norm in virtually all modern search engines.

IR:II-40 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing I
Query Semantics for Set Retrieval

Keyword queries have Boolean semantics that is either implicitly specified by user
behavior and expectations or explicitly specified.

We distinguish four types:

q Single-term queries

q Disjunctive multi-term queries
Only Boolean OR connectives. Example: Antony _ Brutus _ Calpurnia.

q Conjunctive multi-term queries
Only Boolean AND connectives. Example: Antony ^ Brutus ^ Calpurnia.

+ Constraint: Proximity
Example: Antony /5 Caesar

+ Constraint: Phrase
Example: “Antony and Caesar”

q “Complex” Boolean multi-term queries
Remainder of Boolean formulas. Example: (Antony _ Caesar) ^¬ Calpurnia.
Normalized to disjunctive or conjunctive normal form.

IR:II-41 Indexing © HAGEN/POTTHAST/STEIN 2023

Remarks:

q Which index configuration applies to which type of query?

Query types:

– Single-term queries
– Disjunctive multi-term queries
– Conjunctive multi-term queries

• Boolean AND queries
• Proximity queries
• Phrase queries

Index configurations:

– Postlists ordered by document ID
– Postlists ordered by document quality
– Postlists ordered by term weight

– Positional indexing
Postings also store term positions.

IR:II-42 Indexing © HAGEN/POTTHAST/STEIN 2023

Remarks:

q Which index configuration applies to which type of query?

Query types:

– Single-term queries
– Disjunctive multi-term queries
– Conjunctive multi-term queries

• Boolean AND queries
• Proximity queries
• Phrase queries

Index configurations:

– Postlists ordered by document ID
– Postlists ordered by document quality
– Postlists ordered by term weight

– Positional indexing
Postings also store term positions.

q Single-term queries are directly answered with a term weight ordering.

q Disjunctive multi-term queries can be processed with any postlist ordering.

q Conjunctive multi-term queries benefit from a canonical postlist order.

q Proximity and phrase queries require positional indexing.

IR:II-43 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing I
Conjunctive Multi-Term Queries

Given an index with postings k, tf (t, dk) and a query q = t1 ^ . . . ^ tn, compute the
collection R ✓ D of documents relevant to q.

T Postings
...
ti 2, 4 4, 9 8, 2 16, 1 19, 7 23, 5 28, 6 41, 8 50, 6 77, 8 . . .

tj 1, 1 2, 3 3, 5 5, 2 8, 17 41, 6 51, 5 60, 5 71, 3 77, 2 . . .
...

What is the underlying problem to which processing query q can be reduced?

IR:II-44 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing I
Conjunctive Multi-Term Queries

Given an index with postings k, tf (t, dk) and a query q = t1 ^ . . . ^ tn, compute the
collection R ✓ D of documents relevant to q.

T Postings
...
ti 2, 4 4, 9 8, 2 16, 1 19, 7 23, 5 28, 6 41, 8 50, 6 77, 8 . . .

tj 1, 1 2, 3 3, 5 5, 2 8, 17 41, 6 51, 5 60, 5 71, 3 77, 2 . . .
...

Problem: List Intersection.
Instance: L1, . . . , Ln. n � 2 skip lists of numbers.
Solution: A sorted list R of numbers, so that each number occurs in all n lists.

Idea: (1) Intersection of the two shortest lists Li and Lj to obtain R0 ◆ R.
(2) Iterative intersection of R0 with the remaining lists in ascending

order of length.

IR:II-45 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing I
List Intersection

Algorithm: Intersection of Two Lists.
Input: L1, L2. Skip lists of numbers implemented as

:::::::::
singly

::::::::::
linked

:::::::
lists.

Output: Sorted list of numbers occurring in both L1 and L2.

IntersectTwo(L1, L2)

1. Initialization of result list R and one iterator variable x1 and x2 per list.

2. While the iterators point to list entries, process them as follows.

3. If the list entries’ keys match, append a merged entry to the result list R.

4. While the key of x1 is smaller than that of x2 advance x1.

5. While the key of x2 is smaller than that of x1 advance x2.

6. Return R, once an iterator reaches the end of its list.

IR:II-46 Indexing © HAGEN/POTTHAST/STEIN 2023

https://webis.de/downloads/lecturenotes/algorithms-and-datastructures/unit-de-lists.pdf

Query Processing I
List Intersection

Algorithm: Intersection of Two Lists.
Input: L1, L2. Skip lists of numbers implemented as

:::::::::
singly

::::::::::
linked

:::::::
lists.

Output: Sorted list of numbers occurring in both L1 and L2.

IntersectTwo(L1, L2)

1. R = list(); x1 = L1.head ; x2 = L2.head

2. WHILE x1 6= NIL AND x2 6= NIL DO
3. IF x1.key == x2.key THEN
4. R = Insert(R,merge(x1, x2))
5. x1 = x1.next ; x2 = x2.next

6. ENDIF
7. WHILE x1 6= NIL AND x2 6= NIL AND x1.key < x2.key DO
8. IF CanSkip(x1, x2.key) THEN
9. x1 = Skip(x1, x2.key)

10. ELSE
11. x1 = x1.next

12. ENDIF
13. ENDDO

... Like lines 7-13 with x1 and x2 exchanged.
21. ENDDO
22. return(R)

IR:II-47 Indexing © HAGEN/POTTHAST/STEIN 2023

https://webis.de/downloads/lecturenotes/algorithms-and-datastructures/unit-de-lists.pdf

Query Processing I
List Intersection

Algorithm: Intersection of Two Lists.
Input: L1, L2. Skip lists of numbers implemented as

:::::::::
singly

::::::::::
linked

:::::::
lists.

Output: Sorted list of numbers occurring in both L1 and L2.

IntersectTwo(L1, L2)

1. R = list(); x1 = L1.head ; x2 = L2.head

2. WHILE x1 6= NIL AND x2 6= NIL DO
3. IF x1.key == x2.key THEN
4. R = Insert(R,merge(x1, x2))
5. x1 = x1.next ; x2 = x2.next

6. ENDIF
... Like lines 14-20 with x1 and x2 exchanged.

14. WHILE x1 6= NIL AND x2 6= NIL AND x2.key < x1.key DO
15. IF CanSkip(x2, x1.key) THEN
16. x2 = Skip(x2, x1.key)
17. ELSE
18. x2 = x2.next

19. ENDIF
20. ENDDO
21. ENDDO
22. return(R)

IR:II-48 Indexing © HAGEN/POTTHAST/STEIN 2023

https://webis.de/downloads/lecturenotes/algorithms-and-datastructures/unit-de-lists.pdf

Query Processing I
List Intersection: Example

Given an index with postings k, tf (t, dk) , two postlists Li, Lj for terms ti, tj, and the
query q = ti ^ tj:

T Postings
...
ti 2, 4 4, 9 8, 2 16, 1 19, 7 23, 5 28, 6 41, 8 50, 6 77, 8 . . .

tj 1, 1 2, 3 3, 5 5, 2 8, 17 41, 6 51, 5 60, 5 71, 3 77, 2 . . .
...

Execute IntersectTwo(Li, Lj).

IR:II-49 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing I
List Intersection: Example

Given an index with postings k, tf (t, dk) , two postlists Li, Lj for terms ti, tj, and the
query q = ti ^ tj:

T Postings
...
ti 2, 4 4, 9 8, 2 16, 1 19, 7 23, 5 28, 6 41, 8 50, 6 77, 8 . . .

tj 1, 1 2, 3 3, 5 5, 2 8, 17 41, 6 51, 5 60, 5 71, 3 77, 2 . . .
...

Execute IntersectTwo(Li, Lj).

Result R = ()

IR:II-50 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing I
List Intersection: Example

Given an index with postings k, tf (t, dk) , two postlists Li, Lj for terms ti, tj, and the
query q = ti ^ tj:

T Postings
... xi
ti 2, 4 4, 9 8, 2 16, 1 19, 7 23, 5 28, 6 41, 8 50, 6 77, 8 . . .

tj 1, 1 2, 3 3, 5 5, 2 8, 17 41, 6 51, 5 60, 5 71, 3 77, 2 . . .
... xj

Execute IntersectTwo(Li, Lj).

Result R = ()

IR:II-51 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing I
List Intersection: Example

Given an index with postings k, tf (t, dk) , two postlists Li, Lj for terms ti, tj, and the
query q = ti ^ tj:

T Postings
... xi
ti 2, 4 4, 9 8, 2 16, 1 19, 7 23, 5 28, 6 41, 8 50, 6 77, 8 . . .

tj 1, 1 2, 3 3, 5 5, 2 8, 17 41, 6 51, 5 60, 5 71, 3 77, 2 . . .
... xj

Execute IntersectTwo(Li, Lj).

Result R = 2, ...

IR:II-52 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing I
List Intersection: Example

Given an index with postings k, tf (t, dk) , two postlists Li, Lj for terms ti, tj, and the
query q = ti ^ tj:

T Postings
... xi
ti 2, 4 4, 9 8, 2 16, 1 19, 7 23, 5 28, 6 41, 8 50, 6 77, 8 . . .

tj 1, 1 2, 3 3, 5 5, 2 8, 17 41, 6 51, 5 60, 5 71, 3 77, 2 . . .
... xj

Execute IntersectTwo(Li, Lj).

Result R = 2, ...

IR:II-53 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing I
List Intersection: Example

Given an index with postings k, tf (t, dk) , two postlists Li, Lj for terms ti, tj, and the
query q = ti ^ tj:

T Postings
... xi
ti 2, 4 4, 9 8, 2 16, 1 19, 7 23, 5 28, 6 41, 8 50, 6 77, 8 . . .

tj 1, 1 2, 3 3, 5 5, 2 8, 17 41, 6 51, 5 60, 5 71, 3 77, 2 . . .
... xj

Execute IntersectTwo(Li, Lj).

Result R = 2, ...

IR:II-54 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing I
List Intersection: Example

Given an index with postings k, tf (t, dk) , two postlists Li, Lj for terms ti, tj, and the
query q = ti ^ tj:

T Postings
... xi
ti 2, 4 4, 9 8, 2 16, 1 19, 7 23, 5 28, 6 41, 8 50, 6 77, 8 . . .

tj 1, 1 2, 3 3, 5 5, 2 8, 17 41, 6 51, 5 60, 5 71, 3 77, 2 . . .
... xj

Execute IntersectTwo(Li, Lj).

Result R = 2, ...

IR:II-55 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing I
List Intersection: Example

Given an index with postings k, tf (t, dk) , two postlists Li, Lj for terms ti, tj, and the
query q = ti ^ tj:

T Postings
... xi
ti 2, 4 4, 9 8, 2 16, 1 19, 7 23, 5 28, 6 41, 8 50, 6 77, 8 . . .

tj 1, 1 2, 3 3, 5 5, 2 8, 17 41, 6 51, 5 60, 5 71, 3 77, 2 . . .
... xj

Execute IntersectTwo(Li, Lj).

Result R = 2, ... 8, ...

IR:II-56 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing I
List Intersection: Example

Given an index with postings k, tf (t, dk) , two postlists Li, Lj for terms ti, tj, and the
query q = ti ^ tj:

T Postings
... xi
ti 2, 4 4, 9 8, 2 16, 1 19, 7 23, 5 28, 6 41, 8 50, 6 77, 8 . . .

tj 1, 1 2, 3 3, 5 5, 2 8, 17 41, 6 51, 5 60, 5 71, 3 77, 2 . . .
... xj

Execute IntersectTwo(Li, Lj).

Result R = 2, ... 8, ...

IR:II-57 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing I
List Intersection: Example

Given an index with postings k, tf (t, dk) , two postlists Li, Lj for terms ti, tj, and the
query q = ti ^ tj:

T Postings
... xi
ti 2, 4 4, 9 8, 2 16, 1 19, 7 23, 5 28, 6 41, 8 50, 6 77, 8 . . .

tj 1, 1 2, 3 3, 5 5, 2 8, 17 41, 6 51, 5 60, 5 71, 3 77, 2 . . .
... xj

Execute IntersectTwo(Li, Lj).

Result R = 2, ... 8, ...

IR:II-58 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing I
List Intersection: Example

Given an index with postings k, tf (t, dk) , two postlists Li, Lj for terms ti, tj, and the
query q = ti ^ tj:

T Postings
... xi
ti 2, 4 4, 9 8, 2 16, 1 19, 7 23, 5 28, 6 41, 8 50, 6 77, 8 . . .

tj 1, 1 2, 3 3, 5 5, 2 8, 17 41, 6 51, 5 60, 5 71, 3 77, 2 . . .
... xj

Execute IntersectTwo(Li, Lj).

Result R = 2, ... 8, ... 41, ...

IR:II-59 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing I
List Intersection: Example

Given an index with postings k, tf (t, dk) , two postlists Li, Lj for terms ti, tj, and the
query q = ti ^ tj:

T Postings
... xi
ti 2, 4 4, 9 8, 2 16, 1 19, 7 23, 5 28, 6 41, 8 50, 6 77, 8 . . .

tj 1, 1 2, 3 3, 5 5, 2 8, 17 41, 6 51, 5 60, 5 71, 3 77, 2 . . .
... xj

Execute IntersectTwo(Li, Lj).

Result R = 2, ... 8, ... 41, ...

IR:II-60 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing I
List Intersection: Example

Given an index with postings k, tf (t, dk) , two postlists Li, Lj for terms ti, tj, and the
query q = ti ^ tj:

T Postings
... xi
ti 2, 4 4, 9 8, 2 16, 1 19, 7 23, 5 28, 6 41, 8 50, 6 77, 8 . . .

tj 1, 1 2, 3 3, 5 5, 2 8, 17 41, 6 51, 5 60, 5 71, 3 77, 2 . . .
... xj

Execute IntersectTwo(Li, Lj).

Result R = 2, ... 8, ... 41, ...

IR:II-61 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing I
List Intersection: Example

Given an index with postings k, tf (t, dk) , two postlists Li, Lj for terms ti, tj, and the
query q = ti ^ tj:

T Postings
... xi
ti 2, 4 4, 9 8, 2 16, 1 19, 7 23, 5 28, 6 41, 8 50, 6 77, 8 . . .

tj 1, 1 2, 3 3, 5 5, 2 8, 17 41, 6 51, 5 60, 5 71, 3 77, 2 . . .
... xj

Execute IntersectTwo(Li, Lj).

Result R = 2, ... 8, ... 41, ... 77, ...

IR:II-62 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing I
List Intersection: Example

Given an index with postings k, tf (t, dk) , two postlists Li, Lj for terms ti, tj, and the
query q = ti ^ tj:

T Postings
... xi
ti 2, 4 4, 9 8, 2 16, 1 19, 7 23, 5 28, 6 41, 8 50, 6 77, 8 . . .

tj 1, 1 2, 3 3, 5 5, 2 8, 17 41, 6 51, 5 60, 5 71, 3 77, 2 . . .
... xj

Execute IntersectTwo(Li, Lj).

Result R = 2, ... 8, ... 41, ... 77, ...

IR:II-63 Indexing © HAGEN/POTTHAST/STEIN 2023

Remarks:

q Postlists are usually too large to fit in main memory, so iterating them brings performance
benefits.

q The key attribute stores the document identifier of a posting.

q The merge function returns a posting merged from the two postings passed in. It merges the
potentially stored term weights and other information stored in them.

q The next attribute stores the successive posting.

q The CanSkip function checks whether the current posting contains skip information and
whether a target with a document identifier less than or equal to the key value passed is
available.

q The Skip function returns the posting that is closest to but less than or equal to the key value
passed.

IR:II-64 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing I
List Intersection

Algorithm: Intersect Many Lists.
Input: L1, . . . , Ln. Skip lists of numbers implemented as

:::::::::
singly

::::::::::
linked

:::::::
lists.

Output: Sorted list of numbers occurring in all L1, . . . , Ln.

IntersectMany(L1, . . . , Ln)

// Sort by list length.

1. H = BuildMinHeap(L1, . . . , Ln);

2. R = ExtractMin(H)

3. WHILE |H| > 0 DO

4. Lmin = ExtractMin(H)

5. R = IntersectTwo(R,Lmin)

6. ENDDO

7. return(R)

Why are lists intersected in ascending
order of list length?

IR:II-65 Indexing © HAGEN/POTTHAST/STEIN 2023

https://webis.de/downloads/lecturenotes/algorithms-and-datastructures/unit-de-lists.pdf

Query Processing I
List Intersection

Algorithm: Intersect Many Lists.
Input: L1, . . . , Ln. Skip lists of numbers implemented as

:::::::::
singly

::::::::::
linked

:::::::
lists.

Output: Sorted list of numbers occurring in all L1, . . . , Ln.

IntersectMany(L1, . . . , Ln)

// Sort by list length.

1. H = BuildMinHeap(L1, . . . , Ln);

2. R = ExtractMin(H)

3. WHILE |H| > 0 DO

4. Lmin = ExtractMin(H)

5. R = IntersectTwo(R,Lmin)

6. ENDDO

7. return(R)

Observations:

q The amount of memory required to
store the result list R is bounded by
the shortest list from L1, . . . , Ln.

q The smaller the result list R, the
more effective are the skip pointers.

q Hard disk seeking is minimized
since every list is read sequentially.

IR:II-66 Indexing © HAGEN/POTTHAST/STEIN 2023

https://webis.de/downloads/lecturenotes/algorithms-and-datastructures/unit-de-lists.pdf

Query Processing I
Proximity Queries

Given a query q = ti /✏ tj, retrieve documents in which ti and tj are in close
proximity, i.e., within an ✏-environment of one another, where ✏ � 1 terms.

IR:II-67 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing I
Proximity Queries

Given a query q = ti /✏ tj, retrieve documents in which ti and tj are in close
proximity, i.e., within an ✏-environment of one another, where ✏ � 1 terms.

Processing proximity queries requires term positions in postings:

<document> [<weights>] [<positions>] [...]

IR:II-68 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing I
Proximity Queries

Given a query q = ti /✏ tj, retrieve documents in which ti and tj are in close
proximity, i.e., within an ✏-environment of one another, where ✏ � 1 terms.

Processing proximity queries requires term positions in postings:

<document> [<weights>] [<positions>] [...]

Example:

d = “You
1

cannot
2

end
3

a
4

sentence
5

with
6

because
7

because
8

because
9

is
10

a
11

conjun
12

ction.”

Posting for “because” and d:

d, 3, (7,8,9)

Posting for “sentence” and d:

d, 1, (5)

In d, “because” is in a 2-environment of {“sentence”, “with”, “because”, “is”, “a”}.

IR:II-69 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing I
Proximity Queries

Algorithm: Position List Intersection.
Input: A1, A2. Sorted arrays of positions of two terms t1, t2 in a document d.

✏. Maximal term distance.
Output: For each position in A1, the positions from A2 within an ✏-environment.

IntersectPositions(A1, A2, ✏)

1. R = map()

2. FOR i = 1 TO A1.length DO
3. R0 = list()

4. FOR j = 1 TO A2.length DO
5. IF |A1[i]� A2[j]|  ✏ THEN
6. insert(R0, A2[j])

7. ELSE IF A2[j] > A1[i] THEN
8. break

9. ENDIF
10. ENDDO
11. insert(R,A1[i], R0)

12. ENDDO
13. return(R)

Remarks:

q Pruning unnecessary comparisons
Lines 7–9: Stop comparing once the j-th
position in A2 exceeds the i-th position in
A1 by more than ✏. The difference can
never get smaller than ✏ again.

q Integration into postlist intersection
The if-statement of Line 3 of IntersectTwo

then additionally checks whether
IntersectPositions returns a non-empty
result.

IR:II-70 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing I
Phrase Queries

Given a phrase query q =“t1 . . . tm”, retrieve documents in which the terms
t1, . . . , tm occur in the same order as in the query q.

IR:II-71 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing I
Phrase Queries

Given a phrase query q =“t1 . . . tm”, retrieve documents in which the terms
t1, . . . , tm occur in the same order as in the query q.

Processing phrase queries requires term positions in postings.

Example:

T Postings
to . . . 4, 250, (..., 133, 137, ...) . . .

be . . . 4, 125, (..., 134, 138, ...) . . .

or . . . 4, 40, (..., 135, ...) . . .

not . . . 4, 15, (..., 136, ...) . . .

What phrase does document 4
contain?

IR:II-72 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing I
Phrase Queries

Given a phrase query q =“t1 . . . tm”, retrieve documents in which the terms
t1, . . . , tm occur in the same order as in the query q.

Processing phrase queries requires term positions in postings.

Example:

T Postings
to . . . 4, 250, (..., 133, 137, ...) . . .

be . . . 4, 125, (..., 134, 138, ...) . . .

or . . . 4, 40, (..., 135, ...) . . .

not . . . 4, 15, (..., 136, ...) . . .

Document 4 contains the phrase
to be or not to be
at term positions 133–138.

Observations:

q Processing phrase queries can be reduced to the list intersection problem.
Algorithms IntersectMany and IntersectTwo can be adjusted to process phrase queries.

q The additional run time for phrase processing is in O(
P

d2IntersectMany(Lt:t2q) |d|).

IR:II-73 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing I
Phrase Queries

Given a phrase query q =“t1 . . . tm”, retrieve documents in which the terms
t1, . . . , tm occur in the same order as in the query q.

To speed up phrase search, n-grams can be used as index terms.

Example:

T Postings
to be . . . 4, 80, (..., 133, 137, ...) . . .

be or . . . 4, 55, (..., 134, ...) . . .

or not . . . 4, 20, (..., 135, ...) . . .

not to . . . 4, 7, (..., 136, ...) . . .

Document 4 contains the phrase
to be or not to be
at term positions 133–138.

How much faster can phrase queries be processed?

IR:II-74 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing I
Phrase Queries

Given a phrase query q =“t1 . . . tm”, retrieve documents in which the terms
t1, . . . , tm occur in the same order as in the query q.

To speed up phrase search, n-grams can be used as index terms.

Example:

T Postings
to be . . . 4, 80, (..., 133, 137, ...) . . .

be or . . . 4, 55, (..., 134, ...) . . .

or not . . . 4, 20, (..., 135, ...) . . .

not to . . . 4, 7, (..., 136, ...) . . .

Document 4 contains the phrase
to be or not to be
at term positions 133–138.

Observations:

q The time to process phrase queries of length at least n is divided by n.
Only non-overlapping n-grams need to be intersected.

q Maintaining an index with n-grams and/or common phrases as index terms
speeds up non-phrase queries as well.

IR:II-75 Indexing © HAGEN/POTTHAST/STEIN 2023

Remarks:

q The space requirements of a positional index are 2–4 times that of a nonpositional index.

q Most basic retrieval models do not directly employ positional information. If keyword proximity
is a desired feature in a retrieval system using a basic retrieval model, positional information
usually is implemented as an additional relevance signal or as a prior probability for a
document.

IR:II-76 Indexing © HAGEN/POTTHAST/STEIN 2023

Chapter IR:II
II. Indexing

q Indexing Basics
q Inverted Index
q Query Processing I
q Query Processing II
q Index Construction
q Index Compression
q Size Estimation

IR:II-77 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing II
Retrieval Types

Query processing can be based on two basic approaches:

q Set retrieval
A query induces a subset of the indexed documents which is considered relevant.
Important applications: e-discovery, patent search, systematic reviews.

q Ranked retrieval
A query induces a ranking among all indexed documents in descending order of relevance.

Ranked retrieval is the norm in virtually all modern search engines.

IR:II-78 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing II
Relevance Scoring (Recap)

Quantification of the relevance of an indexed document d to a query q.

IR:II-79 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing II
Relevance Scoring (Recap)

Quantification of the relevance of an indexed document d to a query q.

Let t 2 T denote a term t from the terminology T of index terms, and let
!X : T ⇥X ! R denote a term weighting function, where X may be a set of
documents D or a set of queries Q. Then the most basic relevance function ⇢ is:

⇢(q, d) =
X

t2T
!Q(t, q) · !D(t, d),

where !Q(t, q) and !D(t, d) are term weights indicating the importance of t for the
query q 2 Q and the document d 2 D, respectively.

IR:II-80 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing II
Relevance Scoring (Recap)

Quantification of the relevance of an indexed document d to a query q.

Let t 2 T denote a term t from the terminology T of index terms, and let
!X : T ⇥X ! R denote a term weighting function, where X may be a set of
documents D or a set of queries Q. Then the most basic relevance function ⇢ is:

⇢(q, d) =
X

t2T
!Q(t, q) · !D(t, d),

where !Q(t, q) and !D(t, d) are term weights indicating the importance of t for the
query q 2 Q and the document d 2 D, respectively.

Observations:

q A term t may have importance, and hence non-zero weights, for a query q or
document d despite not occurring in them. Example: synonyms.

q The majority of terms from T will have insignificant importance to both.

q The term weights !D(t, d) can be pre-computed and indexed.

q The term weights !Q(t, q) must be computed on the fly.
IR:II-81 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing II
Query Semantics for Ranked Retrieval

Keyword queries have Boolean semantics that is either implicitly specified by user
behavior and expectations or explicitly specified.

We distinguish four types:

q Single-term queries

q Disjunctive multi-term queries
Only Boolean OR connectives. Example: Antony _ Brutus _ Calpurnia.

q Conjunctive multi-term queries
Only Boolean AND connectives. Example: Antony ^ Brutus ^ Calpurnia.

+ Constraint: Proximity
Example: Antony /✏ Caesar

+ Constraint: Phrase
Example: “Antony and Caesar”

q “Complex” Boolean multi-term queries
Remainder of Boolean formulas. Example: (Antony _ Caesar) ^¬ Calpurnia.
Can be normalized to disjunctive or conjunctive normal form.

IR:II-82 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing II
Single-Term Queries

Given a single-term query q = t, the optimal postlist ordering is by term weight.

Example:

T Postings (ordered by document identifier)
...
ti 2, 4 4, 9 8, 2 16, 1 19, 7 23, 5 28, 6 41, 8 50, 6 77, 8 . . .

tj 1, 1 2, 3 3, 5 5, 2 8, 17 41, 6 51, 5 60, 5 71, 3 77, 2 . . .
...

Worst case: The last document of the postlist is the most relevant one.
The whole postlist must be examined.

IR:II-83 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing II
Single-Term Queries

Given a single-term query q = t, the optimal postlist ordering is by term weight.

Example:

T Postings (ordered by term weight)
...
ti 4, 9 41, 8 77, 8 19, 7 28, 6 50, 6 23, 5 2, 4 8, 2 16, 1 . . .

tj 8, 17 41, 6 3, 5 51, 5 60, 5 2, 3 71, 3 5, 2 77, 2 1, 1 . . .
...

Best case: The document whose content is best represented by the term t is the
one with the highest term weight. A partial examination of the postlist suffices.

Including a skip list in a postlist ordered by term weights may not be useful.

IR:II-84 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing II
Disjunctive Queries

In general, a query q is processed as a disjunctive query, where each term ti 2 q

may or may not occur in a relevant document d, as long as at least one ti occurs.

Document-at-a-time scoring

q Precondition: a total order of documents in the index’s postlists is enforced
Ordering criterion: document ID or document quality

q Parallel traversal of query term postlists, document ID by document ID.
q Each document’s score is instantly complete, but the ranking only at the end.
q Concurrent disk IO overhead increases with query length.

IR:II-85 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing II
Disjunctive Queries

In general, a query q is processed as a disjunctive query, where each term ti 2 q

may or may not occur in a relevant document d, as long as at least one ti occurs.

Document-at-a-time scoring

q Precondition: a total order of documents in the index’s postlists is enforced
Ordering criterion: document ID or document quality

q Parallel traversal of query term postlists, document ID by document ID.
q Each document’s score is instantly complete, but the ranking only at the end.
q Concurrent disk IO overhead increases with query length.

Term-at-a-time scoring

q Iterative traversal of query term postlists (e.g., in order of term frequency).
q Temporary query postlist contains candidate documents.
q As document scores accumulate, an approximate ranking becomes available.

q More main memory required for maintaining temporary postlist.

IR:II-86 Indexing © HAGEN/POTTHAST/STEIN 2023

Safe and unsafe optimizations exist (e.g., to stop the search early).

IR:II-87 Indexing © HAGEN/POTTHAST/STEIN 2023

Remarks:

q Web search engines often return results without some of a query’s terms for very specific
queries, indicating a disjunctive interpretation. Nevertheless, many retrieval models assign
higher scores to documents matching more of a query’s terms, leaning toward a “conjunctive”
interpretation at least for the (visible) top results.

IR:II-88 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing II
Disjunctive Queries

Algorithm: Document-at-a-time Scoring.
Input: L1, . . . , Lm. The postlists of the terms t1, . . . , tm of query q.

q. Representation of query q, e.g., as array of m term weights.
Output: A list of documents in D, sorted in descending order of relevance to q.

DAATScoring(L1, . . . , Lm,q)

1. Initialization of result list R as priority queue, and postlist iterator variables.

2. While not all postlists have been processed, repeat the following steps.

3. Determine the smallest document identifier d to which the iterators point.

4. Collect all term weights of d in an array d.

5. Calculate the relevance score ⇢(q,d) and insert it in R.

6. Advance all iterators pointing to d.

7. Return the list of scored documents R.

IR:II-89 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing II
Disjunctive Queries
DAATScoring(L1, . . . , Lm,q)

1. R = PriorityQueue()
2. x1 = L1.head ; . . . ; xm = Lm.head

3. continue = TRUE

4. WHILE continue DO
5. d = mini2[1,m](xi.key)
6. d = Array(|q|)
7. FOR i 2 [1,m] DO
8. IF xi 6= NIL AND xi.key = d THEN
9. d[i] = xi.weight

10. ENDIF
11. ENDDO
12. r = ⇢(q,d)
13. Insert(R, record(d, r))
14. continue = FALSE

15. FOR i 2 [1,m] DO
16. IF xi 6= NIL AND xi.key = d THEN
17. xi = xi.next

18. ENDIF
19. IF xi 6= NIL THEN
20. continue = TRUE

21. ENDIF
22. ENDDO
23. ENDDO
24. return(R)

Example:

T Postings
...
ti 1, 4 4, 9 8, 2 16, 1 19, 7 . . .
...
tj 1, 1 2, 3 5, 5 7, 2 8, 8 . . .
...
tk 1, 2 2, 4 5, 1 6, 3 8, 5 . . .
...

q =

0

BBBBBBBBB@

...
5
...
8
...
3
...

1

CCCCCCCCCA

IR:II-90 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing II
Disjunctive Queries
DAATScoring(L1, . . . , Lm,q)

1. R = PriorityQueue()
2. x1 = L1.head ; . . . ; xm = Lm.head

3. continue = TRUE

4. WHILE continue DO
5. d = mini2[1,m](xi.key)
6. d = Array(|q|)
7. FOR i 2 [1,m] DO
8. IF xi 6= NIL AND xi.key = d THEN
9. d[i] = xi.weight

10. ENDIF
11. ENDDO
12. r = ⇢(q,d)
13. Insert(R, record(d, r))
14. continue = FALSE

15. FOR i 2 [1,m] DO
16. IF xi 6= NIL AND xi.key = d THEN
17. xi = xi.next

18. ENDIF
19. IF xi 6= NIL THEN
20. continue = TRUE

21. ENDIF
22. ENDDO
23. ENDDO
24. return(R)

Example:

T Postings
... xi
ti 1, 4 4, 9 8, 2 16, 1 19, 7 . . .
... xj
tj 1, 1 2, 3 5, 5 7, 2 8, 8 . . .
... xk
tk 1, 2 2, 4 5, 1 6, 3 8, 5 . . .
...

q =

0

BBBBBBBBB@

...
5
...
8
...
3
...

1

CCCCCCCCCA

d1 =

0

BBBBBBBBB@

...
4
...
1
...
2
...

1

CCCCCCCCCA

IR:II-91 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing II
Disjunctive Queries
DAATScoring(L1, . . . , Lm,q)

1. R = PriorityQueue()
2. x1 = L1.head ; . . . ; xm = Lm.head

3. continue = TRUE

4. WHILE continue DO
5. d = mini2[1,m](xi.key)
6. d = Array(|q|)
7. FOR i 2 [1,m] DO
8. IF xi 6= NIL AND xi.key = d THEN
9. d[i] = xi.weight

10. ENDIF
11. ENDDO
12. r = ⇢(q,d)
13. Insert(R, record(d, r))
14. continue = FALSE

15. FOR i 2 [1,m] DO
16. IF xi 6= NIL AND xi.key = d THEN
17. xi = xi.next

18. ENDIF
19. IF xi 6= NIL THEN
20. continue = TRUE

21. ENDIF
22. ENDDO
23. ENDDO
24. return(R)

Example:

T Postings
... xi
ti 1, 4 4, 9 8, 2 16, 1 19, 7 . . .
... xj
tj 1, 1 2, 3 5, 5 7, 2 8, 8 . . .
... xk
tk 1, 2 2, 4 5, 1 6, 3 8, 5 . . .
...

q =

0

BBBBBBBBB@

...
5
...
8
...
3
...

1

CCCCCCCCCA

d2 =

0

BBBBBBBBB@

...
0
...
3
...
4
...

1

CCCCCCCCCA

IR:II-92 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing II
Disjunctive Queries
DAATScoring(L1, . . . , Lm,q)

1. R = PriorityQueue()
2. x1 = L1.head ; . . . ; xm = Lm.head

3. continue = TRUE

4. WHILE continue DO
5. d = mini2[1,m](xi.key)
6. d = Array(|q|)
7. FOR i 2 [1,m] DO
8. IF xi 6= NIL AND xi.key = d THEN
9. d[i] = xi.weight

10. ENDIF
11. ENDDO
12. r = ⇢(q,d)
13. Insert(R, record(d, r))
14. continue = FALSE

15. FOR i 2 [1,m] DO
16. IF xi 6= NIL AND xi.key = d THEN
17. xi = xi.next

18. ENDIF
19. IF xi 6= NIL THEN
20. continue = TRUE

21. ENDIF
22. ENDDO
23. ENDDO
24. return(R)

Example:

T Postings
... xi
ti 1, 4 4, 9 8, 2 16, 1 19, 7 . . .
... xj
tj 1, 1 2, 3 5, 5 7, 2 8, 8 . . .
... xk
tk 1, 2 2, 4 5, 1 6, 3 8, 5 . . .
...

q =

0

BBBBBBBBB@

...
5
...
8
...
3
...

1

CCCCCCCCCA

d4 =

0

BBBBBBBBB@

...
9
...
0
...
0
...

1

CCCCCCCCCA

IR:II-93 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing II
Disjunctive Queries
DAATScoring(L1, . . . , Lm,q)

1. R = PriorityQueue()
2. x1 = L1.head ; . . . ; xm = Lm.head

3. continue = TRUE

4. WHILE continue DO
5. d = mini2[1,m](xi.key)
6. d = Array(|q|)
7. FOR i 2 [1,m] DO
8. IF xi 6= NIL AND xi.key = d THEN
9. d[i] = xi.weight

10. ENDIF
11. ENDDO
12. r = ⇢(q,d)
13. Insert(R, record(d, r))
14. continue = FALSE

15. FOR i 2 [1,m] DO
16. IF xi 6= NIL AND xi.key = d THEN
17. xi = xi.next

18. ENDIF
19. IF xi 6= NIL THEN
20. continue = TRUE

21. ENDIF
22. ENDDO
23. ENDDO
24. return(R)

Example:

T Postings
... xi
ti 1, 4 4, 9 8, 2 16, 1 19, 7 . . .
... xj
tj 1, 1 2, 3 5, 5 7, 2 8, 8 . . .
... xk
tk 1, 2 2, 4 5, 1 6, 3 8, 5 . . .
...

q =

0

BBBBBBBBB@

...
5
...
8
...
3
...

1

CCCCCCCCCA

d5 =

0

BBBBBBBBB@

...
0
...
5
...
1
...

1

CCCCCCCCCA

IR:II-94 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing II
Disjunctive Queries
DAATScoring(L1, . . . , Lm,q)

1. R = PriorityQueue()
2. x1 = L1.head ; . . . ; xm = Lm.head

3. continue = TRUE

4. WHILE continue DO
5. d = mini2[1,m](xi.key)
6. d = Array(|q|)
7. FOR i 2 [1,m] DO
8. IF xi 6= NIL AND xi.key = d THEN
9. d[i] = xi.weight

10. ENDIF
11. ENDDO
12. r = ⇢(q,d)
13. Insert(R, record(d, r))
14. continue = FALSE

15. FOR i 2 [1,m] DO
16. IF xi 6= NIL AND xi.key = d THEN
17. xi = xi.next

18. ENDIF
19. IF xi 6= NIL THEN
20. continue = TRUE

21. ENDIF
22. ENDDO
23. ENDDO
24. return(R)

Example:

T Postings
... xi
ti 1, 4 4, 9 8, 2 16, 1 19, 7 . . .
... xj
tj 1, 1 2, 3 5, 5 7, 2 8, 8 . . .
... xk
tk 1, 2 2, 4 5, 1 6, 3 8, 5 . . .
...

q =

0

BBBBBBBBB@

...
5
...
8
...
3
...

1

CCCCCCCCCA

d6 =

0

BBBBBBBBB@

...
0
...
0
...
3
...

1

CCCCCCCCCA

IR:II-95 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing II
Disjunctive Queries
DAATScoring(L1, . . . , Lm,q)

1. R = PriorityQueue()
2. x1 = L1.head ; . . . ; xm = Lm.head

3. continue = TRUE

4. WHILE continue DO
5. d = mini2[1,m](xi.key)
6. d = Array(|q|)
7. FOR i 2 [1,m] DO
8. IF xi 6= NIL AND xi.key = d THEN
9. d[i] = xi.weight

10. ENDIF
11. ENDDO
12. r = ⇢(q,d)
13. Insert(R, record(d, r))
14. continue = FALSE

15. FOR i 2 [1,m] DO
16. IF xi 6= NIL AND xi.key = d THEN
17. xi = xi.next

18. ENDIF
19. IF xi 6= NIL THEN
20. continue = TRUE

21. ENDIF
22. ENDDO
23. ENDDO
24. return(R)

Example:

T Postings
... xi
ti 1, 4 4, 9 8, 2 16, 1 19, 7 . . .
... xj
tj 1, 1 2, 3 5, 5 7, 2 8, 8 . . .
... xk
tk 1, 2 2, 4 5, 1 6, 3 8, 5 . . .
...

q =

0

BBBBBBBBB@

...
5
...
8
...
3
...

1

CCCCCCCCCA

d7 =

0

BBBBBBBBB@

...
0
...
2
...
0
...

1

CCCCCCCCCA

IR:II-96 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing II
Disjunctive Queries
DAATScoring(L1, . . . , Lm,q)

1. R = PriorityQueue()
2. x1 = L1.head ; . . . ; xm = Lm.head

3. continue = TRUE

4. WHILE continue DO
5. d = mini2[1,m](xi.key)
6. d = Array(|q|)
7. FOR i 2 [1,m] DO
8. IF xi 6= NIL AND xi.key = d THEN
9. d[i] = xi.weight

10. ENDIF
11. ENDDO
12. r = ⇢(q,d)
13. Insert(R, record(d, r))
14. continue = FALSE

15. FOR i 2 [1,m] DO
16. IF xi 6= NIL AND xi.key = d THEN
17. xi = xi.next

18. ENDIF
19. IF xi 6= NIL THEN
20. continue = TRUE

21. ENDIF
22. ENDDO
23. ENDDO
24. return(R)

Example:

T Postings
... xi
ti 1, 4 4, 9 8, 2 16, 1 19, 7 . . .
... xj
tj 1, 1 2, 3 5, 5 7, 2 8, 8 . . .
... xk
tk 1, 2 2, 4 5, 1 6, 3 8, 5 . . .
...

q =

0

BBBBBBBBB@

...
5
...
8
...
3
...

1

CCCCCCCCCA

d8 =

0

BBBBBBBBB@

...
2
...
8
...
5
...

1

CCCCCCCCCA

IR:II-97 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing II
Disjunctive Queries
DAATScoring(L1, . . . , Lm,q)

1. R = PriorityQueue()
2. x1 = L1.head ; . . . ; xm = Lm.head

3. continue = TRUE

4. WHILE continue DO
5. d = mini2[1,m](xi.key)
6. d = Array(|q|)
7. FOR i 2 [1,m] DO
8. IF xi 6= NIL AND xi.key = d THEN
9. d[i] = xi.weight

10. ENDIF
11. ENDDO
12. r = ⇢(q,d)
13. Insert(R, record(d, r))
14. continue = FALSE

15. FOR i 2 [1,m] DO
16. IF xi 6= NIL AND xi.key = d THEN
17. xi = xi.next

18. ENDIF
19. IF xi 6= NIL THEN
20. continue = TRUE

21. ENDIF
22. ENDDO
23. ENDDO
24. return(R)

Example:

T Postings
... xi
ti 1, 4 4, 9 8, 2 16, 1 19, 7 . . .
... xj
tj 1, 1 2, 3 5, 5 7, 2 8, 8 . . .
... xk
tk 1, 2 2, 4 5, 1 6, 3 8, 5 . . .
...

q =

0

BBBBBBBBB@

...
5
...
8
...
3
...

1

CCCCCCCCCA

d16 =

0

BBBBBBBBB@

...
1
...
wj
...
wk
...

1

CCCCCCCCCA

IR:II-98 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing II
Disjunctive Queries
DAATScoring(L1, . . . , Lm,q)

1. R = PriorityQueue()
2. x1 = L1.head ; . . . ; xm = Lm.head

3. continue = TRUE

4. WHILE continue DO
5. d = mini2[1,m](xi.key)
6. d = Array(|q|)
7. FOR i 2 [1,m] DO
8. IF xi 6= NIL AND xi.key = d THEN
9. d[i] = xi.weight

10. ENDIF
11. ENDDO
12. r = ⇢(q,d)
13. Insert(R, record(d, r))
14. continue = FALSE

15. FOR i 2 [1,m] DO
16. IF xi 6= NIL AND xi.key = d THEN
17. xi = xi.next

18. ENDIF
19. IF xi 6= NIL THEN
20. continue = TRUE

21. ENDIF
22. ENDDO
23. ENDDO
24. return(R)

Example:

T Postings
... xi
ti 1, 4 4, 9 8, 2 16, 1 19, 7 . . .
... xj
tj 1, 1 2, 3 5, 5 7, 2 8, 8 . . .
... xk
tk 1, 2 2, 4 5, 1 6, 3 8, 5 . . .
...

q =

0

BBBBBBBBB@

...
5
...
8
...
3
...

1

CCCCCCCCCA

d19 =

0

BBBBBBBBB@

...
7
...
wj
...
wk
...

1

CCCCCCCCCA

IR:II-99 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing II
Disjunctive Queries
DAATScoring(L1, . . . , Lm,q)

1. R = PriorityQueue()
2. x1 = L1.head ; . . . ; xm = Lm.head

3. continue = TRUE

4. WHILE continue DO
5. d = mini2[1,m](xi.key)
6. d = Array(|q|)
7. FOR i 2 [1,m] DO
8. IF xi 6= NIL AND xi.key = d THEN
9. d[i] = xi.weight

10. ENDIF
11. ENDDO
12. r = ⇢(q,d)
13. Insert(R, record(d, r))
14. continue = FALSE

15. FOR i 2 [1,m] DO
16. IF xi 6= NIL AND xi.key = d THEN
17. xi = xi.next

18. ENDIF
19. IF xi 6= NIL THEN
20. continue = TRUE

21. ENDIF
22. ENDDO
23. ENDDO
24. return(R)

Example:

T Postings
... xi
ti 1, 4 4, 9 8, 2 16, 1 19, 7 . . .
... xj
tj 1, 1 2, 3 5, 5 7, 2 8, 8 . . .
... xk
tk 1, 2 2, 4 5, 1 6, 3 8, 5 . . .
...

q =

0

BBBBBBBBB@

...
5
...
8
...
3
...

1

CCCCCCCCCA

d =

0

BBBBBBBBB@

...
wi
...
wj
...
wk
...

1

CCCCCCCCCA

IR:II-100 Indexing © HAGEN/POTTHAST/STEIN 2023

Remarks:

q DAAT = Document at a time

q We distinguish between a real-world query q and its computer representation q. Likewise,
document (identifier) d’s representation is d. More complex representations can be imagined
than the array-of-weights representations exemplified.

q Relevance function ⇢(q,d) maps pairs of document and query representations to a
real-valued score indicating document d’s relevance to query q.

q Document-at-a-time scoring makes heavy use of disk seeks. With increasing query length
|q|, dependent on the type of disks used, and the distribution of the index across disks, the
practical run time of this approach can be poor (albeit, theoretically, exactly the same
postings are processed as for term-at-a-time scoring).

q Document-at-a-time scoring has a rather small memory footprint on the order of the number
of documents to return. This footprint can easily be bounded within top-k retrieval by limiting
the size of the results priority queue to the k entries with the currently highest scores.

q Document-at-a-time scoring presumes a global postlist ordering by document identifier or
document quality.

IR:II-101 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing II
Disjunctive Queries

Algorithm: Term-at-a-time Scoring.
Input: L1, . . . , Lm. The postlists of the terms t1, . . . , tm of query q.

q. Representation of query q, e.g., as array of m term weights.
Output: A list of documents in D, sorted in descending order of relevance to q.

TAATScoring(L1, . . . , Lm,q)

1. R = map()

2. FOR i 2 [1,m] DO

3. xi = Li.head

4. WHILE xi 6= NIL DO

5. d = xi.key

6. w = xi.weight

7. R[d] = R[d] + q[i] · w
8. xi = xi.next

9. ENDDO

10. ENDDO

11. return(PriorityQueue(R))

1. Initialization of result list R as map.
2. Process postlists interatively.
3. Initialization of postlist iterator for the i-th postlist.
4. For each document d’s posting in the postlist:
5. Get d’s ID.
6. Get t’s term weight for d.
7. Update d’s partial document score.
8. Advance the iterator.

11. Return the result list, ordered by document scores.

IR:II-102 Indexing © HAGEN/POTTHAST/STEIN 2023

Remarks:

q TAAT = Term at a time

q Term-at-a-time scoring has a comparably high main memory load, since the last
“intermediate” |R| = |

Sm
i=1 Li| before an actual ordering is performed. Otherwise, postlists are

read consecutively, which suits rotating hard disks. Massive parallelization is possible.

q The order in which terms are processed (Line 2) affects how quick the intermediate scores in
R approach the final document scores.

q The relevance function ⇢ must be additive (Line 7), or otherwise incrementally computable.

q Term-at-a-time scoring makes no a priori assumptions about postlist ordering; in case of
conjunctive interpretation some ordering by document identifier is still very helpful since then
skip lists can be exploited. However, to speed up retrieval and allow for (unsafe) early
termination, ordering by term weight is required.

IR:II-103 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing II
Top-k Retrieval

Search engine users are often interested only in the top ranked k documents.
Lower-ranked documents will likely never be viewed.

Query processing optimization approaches:

q Term weight threshold
TAAT-scoring: skip query terms whose inverse document frequency is lower than that of
other query terms. Exception: stop word-heavy queries (e.g., to be or not to be).

q Relevance score threshold
DAAT-scoring: once >k documents have been found, determine co-occurring query terms in
the top k ones; skip remaining documents not containing co-occurring query terms.

q Early termination
Postlists ordered by term weight: stop postlist traversal early, disregarding the rest of the
postlist that cannot contribute enough to a document’s relevance score.

q Tiered indexes
Divide documents into index tiers by quality or term frequency. If an insufficient amount of
documents is found in the top tier, resort to the next one.

IR:II-104 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing II
Index Distribution

The larger the size of the document collection D to be indexed, the more query
processing time can be improved by scaling up and scaling out.

Term distribution

q Distribution of postlists across local disks.
q Speeds up processing on spinning hard drives.

Document distribution (also: sharding)

q Random division of the document collection into subsets (so-called shards)
and indexing of each shard on a different server for parallel query processing.

q Benefit: Smaller indexes return (more) results faster due to shorter postlists.
q Overhead: Query broker to dispatch queries and fuse each server’s results.

Tiered indexes

q Sharding of the document collection into tiers (e.g., by document importance)
q For instance: Tier 1 shards are kept in RAM, Tier 2 shards are kept in flash

IR:II-105 Indexing © HAGEN/POTTHAST/STEIN 2023

https://en.wikipedia.org/wiki/Scalability#Horizontal_(scale_out)_and_vertical_scaling_(scale_up)

memory, and Tier 3 shards on spinning hard disks.

IR:II-106 Indexing © HAGEN/POTTHAST/STEIN 2023

Query Processing II
Caching

Queries obey Zipf’s law: roughly half the queries a day are unique on that day.
Moreover, about 15% of the queries per day have never occurred before [Gomes 2017].

Consequently, the majority of queries have been seen before, enabling the use of
caching to speed up query processing.

Caching can be applied at various points:

q Result caching

q Caching of postlist intersections

q Postlist caching

Individual cache refresh strategies must be employed to avoid stale data. Cache
hierarchies of hardware and operating system should be exploited.

IR:II-107 Indexing © HAGEN/POTTHAST/STEIN 2023

https://blog.google/products/search/our-latest-quality-improvements-search/

Chapter IR:II
II. Indexing

q Indexing Basics
q Inverted Index
q Query Processing I
q Query Processing II
q Index Construction
q Index Compression
q Size Estimation

IR:II-147 Indexing © GIENAPP/HAGEN/POTTHAST/SCELLS/STEIN 2022

Compression
Size Issues

Inverted lists can become very large.

q Rule of thumb: 25–50% of document collection.

q 2–4 times higher if n-grams are indexed.

Compression of indexes saves disk and/or memory space.

q Best techniques have good compression ratios, easy to decompress.

q Reduces seek time on disk.

q Disadvantage: Decompression time.

We need lossless compression ‹ no information lost

q Lossy compression for images, audio, video with very high compression ratios

As we iterate the posting list, read a stream of bits to decode postings.

q Postings must be decoded while reading.

IR:II-148 Indexing © GIENAPP/HAGEN/POTTHAST/SCELLS/STEIN 2022

Compression
Basic Idea

Common elements use short codes, uncommon elements use long codes.

q Posting lists are just lists of numbers.

Naïve number coding:

q Number sequence: 0, 1, 0, 2, 0, 3, 0
q Possible encoding (2 bits): 00 01 00 10 00 11 00
q Encode 0 using a single 0: 0 01 0 10 0 11 0 ‹ 0 is common element
q Only 10 bits, but looks like: 0 01 01 0 0 11 0
q Which encodes: 0, 1, 1, 0, 0, 3, 0

– Oops!

IR:II-149 Indexing © GIENAPP/HAGEN/POTTHAST/SCELLS/STEIN 2022

Compression
Basic Idea

Common elements use short codes, uncommon elements use long codes.

q Posting lists are just lists of numbers.

Naïve number coding:

q Number sequence: 0, 1, 0, 2, 0, 3, 0
q Possible encoding (2 bits): 00 01 00 10 00 11 00
q Encode 0 using a single 0: 0 01 0 10 0 11 0 ‹ 0 is common element
q Only 10 bits, but looks like: 0 01 01 0 0 11 0
q Which encodes: 0, 1, 1, 0, 0, 3, 0

– Oops!

Unambiguous coding:

q 0 ! 0, 1 ! 101, 2 ! 110, 3 ! 111 ‹ add a 1 before each number
q Yields 0 101 0 110 0 111 0 (13 bits)
q 2-bit encoding was also unambiguous (14 bits)

IR:II-150 Indexing © GIENAPP/HAGEN/POTTHAST/SCELLS/STEIN 2022

Compression
Unambiguous codes

Goal: Small numbers receive small code values ‹ Unary code.

q Encode k by k 1s followed by 0 (0 at end makes code unambiguous).
q 0 ! 0, 1 ! 10, 2 ! 110, 3 ! 1110, . . .

Unary: efficient for small numbers such as 0 and 1, but quickly becomes expensive.

q 1023 can be represented in 10 binary bits, but requires 1024 bits in unary.

Binary: efficient for large numbers, but it may be ambiguous (not byte aligned).

q Not so useful on its own for compression.

IR:II-151 Indexing © GIENAPP/HAGEN/POTTHAST/SCELLS/STEIN 2022

Compression
Elias-� Code

Let’s use advantages from unary and binary encoding schemes.

To encode a number k, compute kd = blog2 kc and kr = k � 2blog2 kc

q kd is least amount of binary digits needed (highest power of 2).
q kr is k after removing the leftmost 1 of its binary encoding (k > 0).

Encode: kd as unary (followed by 0) and kr as binary (in kd binary digits).

Number (k) kd kr Code
1 0 0 0
2 1 0 10 0
6 2 2 110 10

15 3 7 1110 111
16 4 0 11110 0000

255 7 127 11111110 1111111
1023 9 511 1111111110 111111111

Decode: Let N be kd without the final 0, then 2N + kr.

IR:II-152 Indexing © GIENAPP/HAGEN/POTTHAST/SCELLS/STEIN 2022

Compression
Elias-� Code

1110011

1110 011

blog2 14c = 3 14� 23 = 6

14

1110 011

3 6

23 + 6 = 14

BinaryUnary

E
nc

od
in

g
D

ec
od

in
g

kd krk

IR:II-153 Indexing © GIENAPP/HAGEN/POTTHAST/SCELLS/STEIN 2022

Compression
Elias-� Code

Elias-� code never uses more bits than unary, many fewer for k > 2

q 1023 takes just 19 bits instead of 1024 bits using unary

In general, takes 2blog2 kc + 1 bits

q blog2 kc + 1 for unary part
q blog2 kc for binary part

In binary, can encode k in blog2 kc bits.

q Elias-� needs twice as much as binary to make it unambiguous.

IR:II-154 Indexing © GIENAPP/HAGEN/POTTHAST/SCELLS/STEIN 2022

Compression
Elias-� Code

Elias-� code never uses more bits than unary, many fewer for k > 2

q 1023 takes just 19 bits instead of 1024 bits using unary

In general, takes 2blog2 kc + 1 bits

q blog2 kc + 1 for unary part
q blog2 kc for binary part

In binary, can encode k in blog2 kc bits.

q Elias-� needs twice as much as binary to make it unambiguous.

We have an unambiguous code.

What can we encode such that we have few large numbers?

IR:II-155 Indexing © GIENAPP/HAGEN/POTTHAST/SCELLS/STEIN 2022

Compression
Delta Encoding

What to compress? ‹ Need to find distributions with few large numbers.

IR:II-156 Indexing © GIENAPP/HAGEN/POTTHAST/SCELLS/STEIN 2022

Compression
Delta Encoding

What to compress? ‹ Need to find distributions with few large numbers.

Document identifiers.

q Longer documents occur more often in an index.

IR:II-157 Indexing © GIENAPP/HAGEN/POTTHAST/SCELLS/STEIN 2022

Compression
Delta Encoding

What to compress? ‹ Need to find distributions with few large numbers.

Document identifiers.

q Longer documents occur more often in an index.

Differences between document identifiers in a posting list.

q Document identifiers grow but distances between are on average the same.

q Differences in document identifiers are mostly small numbers.

q Delta encoding: Encode differences between document numbers (d-gaps)

IR:II-158 Indexing © GIENAPP/HAGEN/POTTHAST/SCELLS/STEIN 2022

Compression
Delta Encoding

Posting list of document ids.

q 1, 5, 9, 18, 23, 24, 30, 44, 45, 48

Differences between adjacent numbers (d-gaps).

q 1, 4, 4, 9, 5, 1, 6, 14, 1, 3

Ordered list of (large) numbers turns into ordered list of small numbers.

q We can still do better than Elias-� when we have large gaps.

To improve coding of large numbers, use Elias-� code.

q Instead of encoding kd in unary, we encode kd + 1 using Elias-�
q Takes approximately 2 log2 k + log2 k bits (as opposed to 2blog2 kc + 1).

IR:II-159 Indexing © GIENAPP/HAGEN/POTTHAST/SCELLS/STEIN 2022

Compression
Elias-� Code

Split kd into: kdd = blog2(kd + 1)c and kdr = kd � 2blog2(kd+1)c

q Encode: kdd in unary, kdr in binary, and kr in binary

Number (k) kd kr kdd kdr Code
1 0 0 0 0 0
2 1 0 1 0 10 0 0
6 2 2 1 1 10 1 10

15 3 7 2 0 110 00 111
16 4 0 2 1 110 01 0000

255 7 127 3 0 1110 000 1111111
1023 9 511 3 2 1110 010 111111111

q Decode: Count the L ones until first zero (kdd); read another L bits after the
zero (kdr); decode all using Elias-� decoding (N). Decode remaining bits as
binary (kr). Final decoded value is (N � 1) + kr.

q Produces longer encodings of small numbers than Elias-� (<16, same space
between 16 and 32)

q Produces shorter encodings of large numbers than Elias-� (>32)
IR:II-160 Indexing © GIENAPP/HAGEN/POTTHAST/SCELLS/STEIN 2022

Compression
Elias-� Code

11001011

110 01 011

blog2(5 + 1)c = 2 (5 + 1)� 22 = 2

blog2 38c = 5 38� 25 = 6

38

110 01 011

22 + 2 = 6

2(6�1) = 32 6

32 + 6 = 38

BinaryUnary

E
nc

od
in

g
D

ec
od

in
g

IR:II-161 Indexing © GIENAPP/HAGEN/POTTHAST/SCELLS/STEIN 2022

