
Queries
Overview

Concepts covered:

❑ (Pseudo-)Relevance feedback

❑ Query/document expansion/reduction

❑ Query performance prediction
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Queries
Relevance Feedback Overview

Idea: Modify the query given additional documents such that the query is more like
(potentially) relevant documents.

Two possible directions:

❑ For retrieval models that use vectors to represent queries, can use Rocchio’s
update formula.

❑ For all other retrieval models that represent queries as text, perform some
kind of query expansion conditioned on documents.

What could we do if we don’t have explicit relevance assessments?
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Queries
Relevance Feedback Overview

Idea: Modify the query given additional documents such that the query is more like
(potentially) relevant documents.

Two possible directions:

❑ For retrieval models that use vectors to represent queries, can use Rocchio’s
update formula.

❑ For all other retrieval models that represent queries as text, perform some
kind of query expansion conditioned on documents.

What could we do if we don’t have explicit relevance assessments?

Pseudo-relevance Feedback

❑ Explicit relevance judgements are hard to collect.

❑ Instead: assume top-k documents initially retrieved contain relevance signals.
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Queries
Rocchio’s Update Formula

Given a result set R for a query q, and subsets R+ ⊆ R and R− ⊆ R of relevant and
non-relevant documents, where R+ ∩R− = ∅, the query representation q can be
refined with the document representations R using Rocchio’s update formula:

q′ = α · q + β · 1

|R+|
∑

d+∈R+

d+ − γ · 1

|R−|
∑

d−∈R−

d−,

where α, β, and γ adjust the impact of original query and (non-)relevant documents.

q

q’
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Queries
Rocchio’s Update Formula

Given a result set R for a query q, and subsets R+ ⊆ R and R− ⊆ R of relevant and
non-relevant documents, where R+ ∩R− = ∅, the query representation q can be
refined with the document representations R using Rocchio’s update formula:

q′ = α · q + β · 1

|R+|
∑

d+∈R+

d+ − γ · 1

|R−|
∑

d−∈R−

d−,

where α, β, and γ adjust the impact of original query and (non-)relevant documents.

Observations:

❑ Terms not in query q may get added; often a limit is imposed (say, 50).

❑ Terms may accrue negative weight; such weights are set to 0.

❑ Moves the query vector closer to the centroid of relevant documents.

❑ Works well if relevant documents cluster; less suited for multi-faceted topics.

Relevance feedback can be obtained directly from the user, indirectly through user
interaction, or automatically assuming the top-retrieved documents as relevant.
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Queries
Relevance Feedback for Bi-Encoders [Li et al. 2022]

Average of the query and document vectors:

q′ =
1

1 + |R+|
q +

∑
d+∈R+

d+

Adapt the original Rocchio method to bi-encoders:

q′ = α · q + β · 1
|R+|

∑
d+∈R+

d+
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Queries
Relevance Feedback for Bi-Encoders [Li et al. 2022]

Average of the query and document vectors:

q′ =
1

1 + |R+|
q +

∑
d+∈R+

d+

Adapt the original Rocchio method to bi-encoders:

q′ = α · q + β · 1
|R+|

∑
d+∈R+

d+

Observations:

❑ Rocchio method generally leads to more effective rankings.

❑ Both approaches do not model negative feedback.

❑ Big gains in effectiveness with negligible query latency trade-off.

– Computing q′ is cheap, and do not need to use encoder for second round.
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Language Models
Relevance Function ρ: Summary

ρ(d,q) = P (d | q) ∝ P (d) ·
|q|∏
i=1

tf (ti, d) + α ·
∑

d∈D tf (ti,d)∑
d∈D |d|

|d| + α

Assumptions:

1. The user has a mental model of the desired document and generates the
query from that model.

2. The equation represents a probability estimate that the document the user
had in mind was in fact this one.

3. Independence of word occurrence in documents.

4. Terms not in query q are equally likely to occur in relevant and irrelevant
documents.

5. The prior P (d) may be chosen uniform for all documents, or to boost more
important documents.
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Queries
Language Model Relevance Feedback

Given a query q, let R∗ denote the subset of relevant documents from document
collection D. Every d ∈ R∗ and q are samples drawn from their relevance model R∗.

P (d | q) rank
= − KL(R∗ || d) (1)

=
∑
t∈T

P (t | R∗) logP (t | d) −
∑
t∈T

P (t | R∗) logP (t | R∗) (2)

rank
=

∑
t∈T

P (t | R∗) logP (t | d) (3)

(1) Rank-preserving approximation by measuring the negative statistical
difference between the language model d and that of the set R∗ of relevant
documents to query q using the Kullback–Leibler (KL) divergence measure.

(2) Rearrangement.

(3) Rank-preserving omission of the second sum; it does not depend on d.
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Given a query q, let R∗ denote the subset of relevant documents from document
collection D. Every d ∈ R∗ and q are samples drawn from their relevance model R∗.
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Remarks:

❑ The Kullback-Leibler divergence KL(P || Q) (also called relative entropy) is a measure of how
probability distribution Q diverges from an expected probability distribution P . It is a
distribution-wise asymmetric measure. A Kullback-Leibler divergence of 0 indicates that we
can expect similar, if not the same, behavior of two different distributions, while a
Kullback-Leibler divergence of 1 indicates that the two distributions behave in such a different
manner that the expectation given the first distribution approaches zero.
In applications, P typically represents the “true” distribution of data, observations, or a
precisely calculated theoretical distribution, while Q typically represents a theory, model,
description, or approximation of P . [Wikipedia]

❑ Idea: Estimate P (d | R∗) directly, i.e., the probability that the relevance model generates
document d. This is called the document likelihood model, but it does not work in practice:
the estimates for d heavily depend on its length |d| and are therefore hardly comparable for
documents of different lengths.

❑ Idea: Simply estimating P (t | R∗) with the maximum likelihood estimate of t occurring in q:

P (t | R∗) =
tf (t, q)
|q|

yields

P (d | q) rank
=

∑
t∈T

tf (t, q)
|q|

logP (t | d) =
1

|q|
∑
t∈T

logP (t | d)tf (t,q)

which is equivalent to the query likelihood model.
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Queries
Language Model Relevance Feedback

Since R∗ is unknown at query time, we cannot approximate its language model
directly. But we can exploit that, by definition, q has been sampled from R∗.

P (t | R∗) ≈ P (t | q) = P (t | t1, . . . , t|q|) for ti ∈ q (4)

=
P (t, t1, . . . , t|q|)

P (t1, . . . , t|q|)
(5)

=
P (t, t1, . . . , t|q|)∑
t∈T P (t, t1, . . . , t|q|)

(6)

(4) Approximation as probability of observing term t given query q: sampling the
sequence q = (t1, . . . , t|q|) from R∗, what is the probability of sampling t next?

(5) Definition of conditional probability.

(6) Ensures additivity of the model.
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Language Model Relevance Feedback
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Queries
Language Model Relevance Feedback

Let R+ ⊆ R∗ be a set of documents relevant to query q, which have been obtained
via relevance feedback.

P (t, t1, . . . , t|q|) ≈
∑
d∈R+

P (d) · P (t, t1, . . . , t|q| | d) (7)

=
∑
d∈R+

P (d) · P (t | d) ·
|q|∏
i=1

P (ti | d) (8)

(7) Approximation based on the law of
::::::
total

:::::::::::::::::
probability, using the language

models of the individual relevant documents.

(8) Assumption that the query’s terms t1, . . . , t|q| are independent of one
another, as well as from t.
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Language Model Relevance Feedback
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Queries
Language Model Relevance Feedback

ρ(d,q) = P (d | q) ∝
∑
t∈T

∑
d′∈R+ P (d′) · P (t | d′) ·

∏|q|
i=1 P (ti | d′)∑

t∈T
∑

d′∈R+ P (d′) · P (t | d′) ·
∏|q|

i=1 P (ti | d′)
· logP (t | d)

Retrieval:

1. Given query q, rank the documents in D by their query likelihood score.

2. Use the top-ranked 10–50 documents as pseudo-relevance feedback R+.

3. Compute the relevance model probabilities.

4. Rank documents by their KL divergence score as computed above.
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Queries
Relevance Feedback for Cross-Encoders [Li et al. 2023]

Concatenate and truncate. Generate new query by concatenating text from
original query with text of the of the top-k feedback documents, separating each
with a space. Resulting query is truncated to fit into input length.

q′ = ⌈q + + d1, ...,+ + dk⌉256

Concatenate and aggregate. Generate k new queries by concatenating original
query with each of the top-k passages. Re-rank all documents with new query, and
aggregate scores of all the re-scored documents.

q′1 = q + + d1

...

q′k = q + + dk

Sliding window. Generate j new queries by concatenating the top-k feedback
documents and slide a window to partition the text and combine with original query
like in concatenate and aggregate.

Last two require aggregation. Possible aggregation mechanisms include: Average, Max, Fusion.
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Queries
Relevance Feedback for Cross-Encoders [Li et al. 2023]

Observations:

❑ Cross-encoders are already expensive, can only do re-ranking.

❑ Shallow pools of pseudo-relevance feedback are better than deeper.

– More documents lead to query drift.

❑ Concatenate and aggregate is generally the best method.

❑ When aggregation is needed, Average is generally the best, Max is worst.

❑ Relative gains compared to bi-encoders relevance feedback much lower.

❑ Combining relevance feedback for bi-encoder and cross-encoder in a pipeline
improves effectiveness further.
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Queries
Query/Document Expansion/Reduction

Idea: Use a neural model to add or remove terms to queries or documents to make
lexical matching more effective.

Document Expansion

❑ doc2query [Nogueira et al. 2019]

Document Reduction

❑ DeepCT [Dai and Callan 2020]

Query+Document Expansion+Reduction

❑ SPLADE [Formal et al. 2021]
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Queries
Document Expansion with doc2query [Nogueira et al. 2019]

Researchers are finding that cin-
namon reduces blood sugar levels
naturally when taken daily...

Input Document

doc2query
does cinnamon lower
blood sugar?

Predicted Query

Researchers are finding that cinnamon reduces
blood sugar levels naturally when taken daily...

Expanded Document

does cinnamon lower blood sugar?

Search Engine
foods and supplements to
lower blood sugar

User’s Query

BM25

index
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Queries
Document Expansion with doc2query [Nogueira et al. 2019]

doc2query attempts to address the “vocabulary mismatch” problem of lexical
retrieval models by using a neural model to expand the terms of a document.

❑ For each document, predict queries where the document would be relevant.

❑ Encoder-Decoder transformer model (T5) fine-tuned to do prediction.

– Modelled as a sequence-to-sequence task, e.g., translation.
– Translate document ➜ query.
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Queries
Document Expansion with doc2query [Nogueira et al. 2019]

doc2query attempts to address the “vocabulary mismatch” problem of lexical
retrieval models by using a neural model to expand the terms of a document.

❑ For each document, predict queries where the document would be relevant.

❑ Encoder-Decoder transformer model (T5) fine-tuned to do prediction.

– Modelled as a sequence-to-sequence task, e.g., translation.
– Translate document ➜ query.

Observations:

❑ Expanded documents significantly improve BM25 ranking.

– No drops in query latency.

❑ When used in retrieval pipeline, also improves late-stage effectiveness.

❑ Downside: very expensive indexing process.

– Encoder-decoder models are the most computationally intensive.
– MSMARCOv1 (102k passages): from 10 minutes to 760 hours.
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Queries
Document Expansion with doc2query [Nogueira et al. 2019]

Related methods:

❑ TILDEv2 [Zhuang and Zuccon 2021]

– Uses term likelihoods for each document representation to decide as
expansion terms.

– Since expansion term prediction requires only a single forward pass
through the model, indexing is much faster than doc2query, which
requires a forward pass for each query token.
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Queries
Document Reduction with DeepCT [Dai and Callan 2020]

Encoder

[CLS] d1 d2 di [EOS]

d1 d2 di

Linear Layer

ŷd2ŷd1 ŷdi
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Queries
Document Reduction with DeepCT [Dai and Callan 2020]

DeepCT aims to compute “deep contextualised term weights” for each term in a
document. Intuition: use learnt term weights instead of relying on term frequency
and score with BM25.

❑ Compute an importance score for each term as the linear combination of a
term’s contextualised embedding.

❑ Model is trained end-to-end using a regression task to predict a score per
contextualised embedding. Minimise mean square error between predicted
and ground truth weights.

L =
∑
d∈D

∑
di∈d

(ydi − ŷdi)
2

❑ How to obtain ground truth term weights? ➜ query term recall:

ydi =
Qdi

Qd

Qd: set of queries where d is relevant. Qdi Subset of Qd that contain di.
Therefore, ydi estimated as percentage of d’s queries that mention token di.
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Queries
Document Reduction with DeepCT [Dai and Callan 2020]

Observations:

❑ Like doc2query, DeepCT is query independent.

– Queries are only used to generate training labels.
– Term weight estimations can be done offline.
– Query latency not impacted.

❑ Predicted term weights need to be scaled to be used in BM25:

tf DeepCT = round(ŷdi ·N)

If N = 100, and ŷdi < 0.005, this term will be ignored as it has a weight of 0.

❑ Scaling scores to be useable in scoring functions like BM25 has the effect of
document reduction, or pruning.

❑ The combined effect of re-weighting document terms and ignoring terms that
do not contribute to relevance makes DeepCT more effective than doc2query.
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Queries
Document+Query Expansion+Reduction with SPLADE [Formal et al. 2021]

Encoder

[CLS] d1 d2 di [EOS]

[CLS] d1 d2 di [EOS]

Masked Language Modelling Linear Layer

wd2wd1w[CLS] wdi w[EOS]

Term Importance
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Queries
Document+Query Expansion+Reduction with SPLADE [Formal et al. 2021]

SPLADE attempts to learn sparse representations of documents and queries in a
straight-forward way that exploits the masked language modelling task of BERT.

❑ For every token in the document, the masked language model layer provides
a probability distribution over all terms in the vocabulary.

❑ To obtain a single sparse representation, the individual term probability
distributions are aggregated into a single importance estimation distribution.

w′ =
∑

wdi
∈wd

log(1 + ReLU(wdi))

– ReLU enforces sparsity, any value below 0 is set to 0.
– Regularisation in loss function further enforces sparsity

(non-zero entries are penalised).

❑ Final sparse representation may contain new semantically related terms, and
may remove unimportant terms.
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Queries
Document+Query Expansion+Reduction with SPLADE [Formal et al. 2021]

Observations:

❑ SPLADE is parametrised to control level of sparsity in queries and
documents.

❑ Since SPLADE is sparse, and it learns which terms are important, index size
can be greatly compressed.

❑ Compared to doc2query and DeepCT, SPLADE is both more effective, while
maintaining query latency speeds.
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Queries
Document+Query Expansion+Reduction with SPLADE [Formal et al. 2021]

Related Models:

❑ SparTerm [Bai et al. 2020]

– Precursor to SPLADE.

❑ SNRM [Zamani et al. 2018]

– One of the first methods to do learned sparse representations.
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Queries
Query Performance Prediction

Idea: Measure the retrieval effectiveness of a query without ground truth labels.

Two classes of Query Performance Predictors (QPPs):

❑ Pre-retrieval: use signals only from the query itself.

❑ Post-retrieval: use signals from the query and the ranking of documents.

For both classes of QPPs, predictors can either be:

❑ Unsupervised: use signals to make prediction directly.

❑ Supervised: learn a predictor from signals to make a prediction.

Applications: [Carmel and Kurland 2012]

❑ Feedback to users on whether they should reformulate their query.
❑ Feedback to search engine on whether to reformulate query automatically.
❑ Feedback for engineers to identify potential difficult queries.
❑ For IR applications, e.g., weighted rank fusion from multiple systems.
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Queries
Pre-retrieval QPPs

An incomplete list of pre-retrieval QPPs:

❑ Query Length [Mothe and Tanguy 2005]

❑ Term Length [He and Ounis 2006]

❑ Inverse Document Frequency [Cronen-Townsend et al. 2002]

❑ Inverse Collection Term Frequency [Kwok 1996]

❑ Query Scope [Plachouras 2003]

❑ Simplified Clarity Score [He and Ounis 2006]

❑ Collection Query Similarity [Zhao et al 2008]

In general, pre-retrieval QPPs attempt to use statistics about the terms in the query
without actually issuing the query to a retrieval system.

Although it is uncommon for any one given pre-retrieval QPP to correlate with
retrieval effectiveness, the combination of them may provide a better signal.
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Queries
Post-retrieval QPPs

An incomplete list of post-retrieval QPPs:

❑ Clarity Score [Cronen-Townsend et al. 2002]

❑ Weighted Information Gain [Zhou and Croft 2007]

❑ Weighted Expansion Gain [Khwileh et al. 2007]

❑ Normalised Query Commitment [Shtok et al. 2009]

In general, post-retrieval QPPs attempt to use statistics about the documents
retrieved by the query to predict retrieval effectiveness.

Although it is more common for post-retrieval QPPs to correlate with retrieval
effectiveness, the combination of them and in combination with pre-retrieval QPPs
may provide a better signal.
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Queries
Post-retrieval QPPs

Example: Clarity Score

clarity score =
∑
t∈V

P (t|q) log P (t|q)
P (t|C)

,

Computed as the relative entropy, or Kullback-Leibler divergence between the query
and the collection language models, where

P (t|q) =
∑
d∈R

P (t|d)P (d|q).

How to estimate the probabilities is left as an exercise to the reader.
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Queries
Neural QPPs

Supervised:

❑ BERT-QPP [Arabzadeh et al. 2021]

Unsupervised:

❑ Dense-QPP [Arabzadeh et al. 2023]
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Queries
QPP using BERT-QPP [Arabzadeh et al. 2021]

Fine-tune cross-encoder to optimise an evaluation measure with cross-entropy loss:

L =M(q, d) ·QPP (q, d) +

(1−M(q, d)) · 1−QPP (q, d),

Where M is the evaluation measure to optimise, and QPP is the model’s prediction.

Alternatively, fine-tune bi-encoder using euclidean, or L2 loss:

L = ||M(q, d)−QPP (q, d)||2,

Where, QPP = sim(q, d).

Both instantiations attempt to fine-tune an encoder model to predict a score given a
query and a document.
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Queries
QPP using BERT-QPP [Arabzadeh et al. 2021]

Observations:

❑ Can adapt the regression task of optimising an evaluation measure to a
cross-encoder or bi-encoder.

❑ Cross-encoder is better at predicting the retrieval effectiveness of a query
than bi-encoder model.

❑ Compared to other transformer-based QPP measures, BERT-QPP is much
faster to compute. See:

– NQA-QPP [Hashemi et al. 2019]

– NeuralQPP [Zamani et al. 2019]

❑ Also: non-transformer-based supervised QPP method [Datta et al. 2022]
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Queries
QPP using Dense-QPP [Arabzadeh et al. 2022]

Create a perturbed query by applying additive Gaussian white noise:

q′ = q + G(q, µ, σ2)

❑ Characteristics of noise controlled by µ (mean) and σ2 (variance).
❑ Noise should not lean query representation in any particular direction.

– Therefore, µ = 0

❑ In theory, σ2 can be calculated with signal-to-noise ratio.

– In practice, a small value, e.g., 0.01 suffices.

Based on the idea of query “robustness”: the effectiveness of a query should
change little if perturbations are applied to it.

❑ Inject noise into dense representation of queries from a bi-encoder.

❑ A less robust query would experience a noticeable change in retrieval.

❑ Final QPP metric is calculated as the rank similarity between documents
ranked by the original query and the perturbed one.
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Queries
QPP using Dense-QPP [Arabzadeh et al. 2022]

Observations:

❑ Correlation between Dense-QPP and retrieval effectiveness is much higher
than all other QPP methods.

❑ Method is parameterless, amount of noise added to a query is the same for
all queries.

❑ Method is still reasonably efficient to compute, since it uses a bi-encoder
model to score documents and the query only needs to be encoded once.
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Queries
Questions

1. What do you think has a bigger impact on effectiveness, positive or negative
relevance feedback? Do you think this answer changes for classic (e.g.,
BM25) versus neural (e.g., monoBERT) retrieval models?

2. SPLADE works to expand and reduce queries and documents with sparse
representations. How do you think this approach works with short versus long
documents?

3. Query performance predictors are measuring something about how good a
query is at retrieving documents. How are they different from the evaluation
measures we’ve discussed in this course?
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