Chapter IR:III

III. Retrieval Models

- Overview of Retrieval Models
- Boolean Retrieval
- Vector Space Model
- □ Binary Independence Model
- Okapi BM25
- Divergence From Randomness
- □ Latent Semantic Indexing
- □ Explicit Semantic Analysis
- □ Language Models
- □ Combining Evidence
- □ Learning to Rank

Language Models Background

Language models in general include methods to represent the syntactical structures of languages to study them, and to solve natural language processing tasks.

A key goal of modeling a language is to solve the membership problem: Given a string and a language, decide whether the string belongs to the language.

Two complementary approaches have been pursued:

Formal languages

Theoretical approach with an explicit grammar specification and applications in comparably small, controlled languages (e.g., query languages, programming languages).

Statistical language models

Probabilistic approach where grammar is captured only implicitly by analyzing large text collections. Can be applied in less controlled situations.

Important applications of statistical language models:

- Part-of-speech tagging
 Speech and handwriting recognition
- Machine translation
 Information retrieval

Language Models Basics: Grammar

D Alphabet Σ .

An alphabet Σ is a non-empty set of signs or symbols.

\Box Word w.

A word w is a finite sequence of symbols from Σ . The length of a word |w| is the number of symbols it is made of.

 ε denotes the empty word; it is the only word of length 0. Σ^* denotes the set of all words over Σ .

□ Language *L*.

A language L is a set of words over an alphabet Σ .

Grammar *G*.

A grammar G is a calculus to define a language—and a set of rules by which words can be derived. The language corresponding to G contains all words that can be generated using its rules.

Language Models Basics: Grammar

D Alphabet Σ .

An alphabet Σ is a non-empty set of signs or symbols.

\Box Word w.

A word w is a finite sequence of symbols from Σ . The length of a word |w| is the number of symbols it is made of.

 ε denotes the empty word; it is the only word of length 0.

 Σ^* denotes the set of all words over Σ .

□ Language *L*.

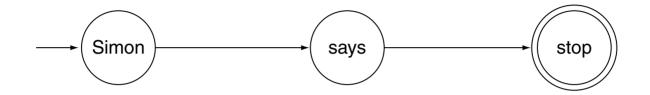
A language *L* is a set of words over an alphabet Σ .

\Box Grammar G.

A grammar *G* is a calculus to define a language—and a set of rules by which words can be derived. The language corresponding to *G* contains all words that can be generated using its rules.

Example: Deterministic Language Model

Grammar G_1 as deterministic finite automaton:

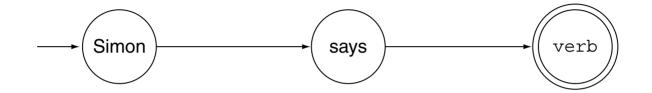


Generated language:

- $\square \ L(G_1) = \{\texttt{Simon says stop}\}$
- □ How to allow for other "Simon says" sentences?

Example: Deterministic Language Model

Grammar G_2 as deterministic finite automaton:

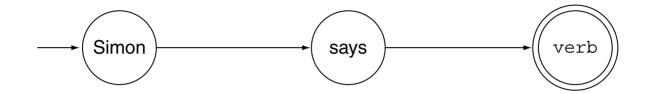


Generated language:

- □ Let verb = {jump, run, ...} denote the set of all verbs.
- □ *L*(*G*₂) contains Simon says sentences, e.g.: Simon says jump, Simon says run, ...
- $\square |L(G_2)| = |verb|$

Example: Deterministic Language Model

Grammar G_2 as deterministic finite automaton:

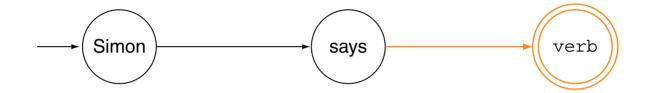


Generated language:

- □ Let verb = {jump, run, ...} denote the set of all verbs.
- □ L(G₂) contains Simon says sentences, e.g.: Simon says jump, Simon says run, ...
- $\square |L(G_2)| = |\texttt{verb}|$
- \Box Is the sentence Simon says science member of $L(G_2)$?

Example: Deterministic Language Model

Grammar G_2 as deterministic finite automaton:



Generated language:

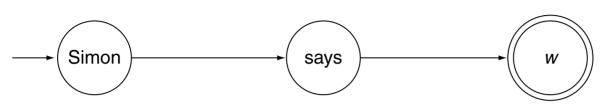
- □ Let verb = {jump, run, ...} denote the set of all verbs.
- □ *L*(*G*₂) contains Simon says sentences, e.g.: Simon says jump, Simon says run, ...
- $\square |L(G_2)| = |verb|$
- \Box Is the sentence Simon says science member of $L(G_2)$?

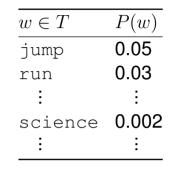
I'm gonna have to science the shit out of this. Mark Watney in The Martian

→ Allowing every word would still result in exceedingly unlikely sentences.

Example: Statistical Language Model

Grammar G_3 as probabilistic automaton:





where w is a random variable over a vocabulary T.

Generated language:

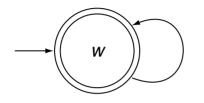
- $\Box \ L(G_3) \text{ contains every three-word sentence starting with Simon says} followed by a word w from T with probability <math>P(w) > \tau$ where τ is a threshold.
- □ Put another way, G_3 maps every sentence *s* that can be formed over its vocabulary Σ to a probability P(s) so that

$$\sum_{s \in \Sigma^*} P(s) = 1$$

In general, probabilistic automata can be used to generate arbitrary documents.

Example: Statistical Language Model

Grammar G_4 as probabilistic automaton:



where w is a random variable over a vocabulary T.

Generated language:

 $\hfill\square$ \bot denotes the probability that the automaton stops.

□ $L(G_4)$ contains all sentences that can be formed over the vocabulary T, assigning a membership probability to each one, e.g.: $s = \text{Simon says that Mark likes science } \bot$ $P(s) = 0.01 \cdot 0.03 \cdot 0.04 \cdot 0.01 \cdot 0.02 \cdot 0.01 \cdot 0.2 = 0.00000000048 = 4.8 \cdot 10^{-12}$

 $\hfill\square$ Suppose every document were generated by its own language model d.

→ Given a query q, P(d₁ | q) > P(d₂ | q) may indicate that d₁ is more relevant to q than d₂.

$w \in T$	P(w)	$w \in T$	P(w)
\bot	0.2	likes	0.02
the	0.2	Simon	0.01
а	0.1	Mark	0.01
that	0.04	science	0.002
says	0.03	:	<u> </u>

Retrieval Model $\mathcal{R} = \langle \mathbf{D}, \mathbf{Q}, \rho \rangle$ [Generic Model] [Boolean] [VSM] [BIM] [BM25] [LSI] [ESA] [LM]

Document representations D.

 $T = \{t_1, \ldots, t_m\}$ is the set of *m* index terms (stemmed words).

 $p(t \mid d)$ is the probability of generating t given d.

 $\mathbf{d} = \{(t_1, p(t_1 \mid d), \dots, (t_m, p(t_m \mid d)))\}$ is a probability distribution over T.

Query representations Q.

 \square $\mathbf{q} = (t_1, \dots, t_{|q|})$, where $t_i \in T$, is a sequence of index terms.

Relevance function ρ .

- $\rho(d,q) = P(\mathbf{d} \mid \mathbf{q})$, the query likelihood model.
- R^+ is a set of documents relevant to q obtained via relevance feedback.
- **R**⁺ = { $(t_1, p(t_1 | R^+), \dots, (t_m, p(t_m | R^+))$ } is a probability distribution over T.

 $\rho(d,q) = \varphi_{KL}(\mathbf{d},\mathbf{R}^+)$, the relevance model.

Retrieval Model $\mathcal{R} = \langle \mathbf{D}, \mathbf{Q}, \rho \rangle$ [Generic Model] [Boolean] [VSM] [BIM] [BM25] [LSI] [ESA] [LM]

Document representations D.

 \Box $T = \{t_1, \ldots, t_m\}$ is the set of *m* index terms (stemmed words).

 \Box $p(t \mid d)$ is the probability of generating *t* given *d*.

 $\Box \ \mathbf{d} = \{(t_1, p(t_1 \mid d), \dots, (t_m, p(t_m \mid d)))\} \text{ is a probability distribution over } T.$

Query representations Q.

 \Box $\mathbf{q} = (t_1, \ldots, t_{|q|})$, where $t_i \in T$, is a sequence of index terms.

Relevance function ρ .

 $\label{eq:relation} \mathbf{\Box} \ \ \rho(d,q) = P(\mathbf{d} \mid \mathbf{q}) \text{, the query likelihood model.}$

 \square R^+ is a set of documents relevant to q obtained via relevance feedback.

 $\square \mathbf{R}^+ = \{(t_1, p(t_1 \mid R^+), \dots, (t_m, p(t_m \mid R^+))\} \text{ is a probability distribution over } T.$

 $\label{eq:relation} \Box \ \ \rho(d,q) = \varphi_{KL}(\mathbf{d},\mathbf{R}^+) \text{, the relevance model}.$

IR:III-173 Retrieval Models

Relevance Function ρ : Derivation

Let d denote a language model for document d, and q the sequence of query terms from query q. Then the query likelihood model is derived as follows:

$$P(\mathbf{d} | \mathbf{q}) = \frac{P(\mathbf{q} | \mathbf{d}) \cdot P(\mathbf{d})}{P(\mathbf{q})}$$
(1)

(1) Application of Bayes' rule.

Relevance Function ρ : Derivation

Let d denote a language model for document d, and q the sequence of query terms from query q. Then the query likelihood model is derived as follows:

$$P(\mathbf{d} \mid \mathbf{q}) = \frac{P(\mathbf{q} \mid \mathbf{d}) \cdot P(\mathbf{d})}{P(\mathbf{q})}$$
(1)
$$\stackrel{\text{rank}}{=} P(\mathbf{q} \mid \mathbf{d}) \cdot P(\mathbf{d})$$
(2)

- (1) Application of Bayes' rule.
- (2) Rank-preserving omission of P(q); it does not depend on d.

Relevance Function ρ : Derivation

Let d denote a language model for document d, and q the sequence of query terms from query q. Then the query likelihood model is derived as follows:

$$P(\mathbf{d} \mid \mathbf{q}) = \frac{P(\mathbf{q} \mid \mathbf{d}) \cdot P(\mathbf{d})}{P(\mathbf{q})}$$
(1)
$$\stackrel{\text{rank}}{=} P(\mathbf{q} \mid \mathbf{d}) \cdot P(\mathbf{d})$$
(2)

$$= P(\mathbf{q} \mid \mathbf{d}) \tag{3}$$

- (1) Application of Bayes' rule.
- (2) Rank-preserving omission of P(q); it does not depend on d.
- (3) Assume P(d) is uniform for all $d \in D$, thereby canceling its influence. This assumption is not required; as a prior, P(d) can be used as a weight of relative importance of d (e.g., PageRank, quality, etc.).

Relevance Function ρ : Derivation

Given a language model d of document d and a sequence q of the terms in query q, compute the probability that q has been generated by d.

$$P(\mathbf{q} \mid \mathbf{d}) = P(t_1, \ldots, t_{|q|} \mid \mathbf{d})$$
(4)

(4) Inflating q.

Relevance Function ρ : Derivation

Given a language model d of document d and a sequence q of the terms in query q, compute the probability that q has been generated by d.

$$P(\mathbf{q} \mid \mathbf{d}) = P(t_1, \dots, t_{|q|} \mid \mathbf{d})$$

$$= \prod_{i=1}^{|q|} P(t_i \mid \mathbf{d})$$
(5)

(4) Inflating q.

(5) Assuming independence between terms.

Relevance Function ρ : Derivation

Given a language model d of document d and a sequence q of the terms in query q, compute the probability that q has been generated by d.

$$P(\mathbf{q} \mid \mathbf{d}) = P(t_1, \dots, t_{|q|} \mid \mathbf{d})$$
(4)
$$\stackrel{\text{rank}}{=} \sum_{i=1}^{|q|} \log P(t_i \mid \mathbf{d})$$
(5)
$$= \prod_{t \in \mathbf{q}} P(t \mid \mathbf{d})^{\text{tf}(t,q)}$$
(6)

- (4) Inflating q.
- (5) Assuming independence between terms.Rank-preserving logarithmization to handle small probabilities.
- (6) Combine duplicate occurrences of term t in query q. This corresponds to the multinomial distribution, albeit omitting its factor $|d|/\prod_{t \in q} tf(t,q)$, which counts the permutations of q's terms but is constant for q.

Relevance Function ρ : Estimation

Let t denote a term from the set of index terms T of document collection D. The construction of a language model d to represent document d is done as follows.

$$P(t \mid \mathbf{d}) = \frac{\mathbf{t}\mathbf{f}(t, d)}{|\mathbf{d}|}, \quad \text{where} \quad \sum_{t \in T} P(t \mid \mathbf{d}) = 1 \quad (7)$$

(7) Maximum likelihood estimation of t's probability under the assumed language model d for document d's topic, given the observed sample d.
Problem: P(t | d) = 0 for t ∉ d, causing P(q | d) = 0 if t ∈ q.

Relevance Function ρ : Estimation

Let t denote a term from the set of index terms T of document collection D. The construction of a language model d to represent document d is done as follows.

$$P(t \mid \mathbf{d}) = \frac{tf(t, d)}{|d|}, \quad \text{where} \quad \sum_{t \in T} P(t \mid \mathbf{d}) = 1 \quad (7)$$

$$P(t \mid \mathbf{D}) = \frac{\sum_{d \in D} tf(t, d)}{\sum_{d \in D} |d|}, \quad \text{where} \quad \sum_{t \in T} P(t \mid \mathbf{D}) = 1 \quad (8)$$

(7) Maximum likelihood estimation of t's probability under the assumed language model d for document d's topic, given the observed sample d.
Problem: P(t | d) = 0 for t ∉ d, causing P(q | d) = 0 if t ∈ q.

(8) Maximum likelihood estimation of t's probability in a language model \mathbf{D} for D.

Relevance Function ρ : Estimation

Let t denote a term from the set of index terms T of document collection D. The construction of a language model d to represent document d is done as follows.

$$P(t \mid \mathbf{d}) = \frac{tf(t, d)}{|d|}, \quad \text{where} \quad \sum_{t \in T} P(t \mid \mathbf{d}) = 1 \quad (7)$$

$$P(t \mid \mathbf{D}) = \frac{\sum_{d \in D} tf(t, d)}{\sum_{d \in D} |d|}, \quad \text{where} \quad \sum_{t \in T} P(t \mid \mathbf{D}) = 1 \quad (8)$$

$$P(t \mid \mathbf{d})' = (1 - \lambda) \cdot P(t \mid \mathbf{d}) + \lambda \cdot P(t \mid \mathbf{D})$$
(9)

- (7) Maximum likelihood estimation of *t*'s probability under the assumed language model d for document *d*'s topic, given the observed sample *d*.
 Problem: P(t | d) = 0 for t ∉ d, causing P(q | d) = 0 if t ∈ q.
- (8) Maximum likelihood estimation of t's probability in a language model D for D.
- (9) Jelinek-Mercer smoothing: linear interpolation of language models d and D.

Relevance Function ρ : Estimation

Taking into account the length of a document d yields an alternative smoothing method.

$$P(t \mid \mathbf{d})' = (1 - \lambda) \cdot P(t \mid \mathbf{d}) + \lambda \cdot P(t \mid \mathbf{D})$$
(9)

(9) Jelinek-Mercer smoothing: linear interpolation of language models d and D.

Relevance Function ρ : Estimation

Taking into account the length of a document d yields an alternative smoothing method.

$$P(t \mid \mathbf{d})' = (1 - \lambda) \cdot P(t \mid \mathbf{d}) + \lambda \cdot P(t \mid \mathbf{D})$$
(9)
$$\lambda = \frac{\alpha}{|d| + \alpha}$$
(10)

- (9) Jelinek-Mercer smoothing: linear interpolation of language models d and D.
- (10) Dirichlet smoothing: adjust λ with respect to the length of document d. The longer a document d, the more trustworthy its language model d becomes.

Relevance Function ρ : Estimation

Taking into account the length of a document d yields an alternative smoothing method.

$$P(t \mid \mathbf{d})' = (1 - \lambda) \cdot P(t \mid \mathbf{d}) + \lambda \cdot P(t \mid \mathbf{D})$$
(9)

$$\lambda = \frac{\alpha}{|d| + \alpha} \tag{10}$$

$$P(t \mid \mathbf{d})'' = \frac{t\mathbf{f}(t, d) + \alpha \cdot P(t \mid \mathbf{D})}{|d| + \alpha}$$
(11)

- (9) Jelinek-Mercer smoothing: linear interpolation of language models d and D.
- (10) Dirichlet smoothing: adjust λ with respect to the length of document d. The longer a document d, the more trustworthy its language model d becomes.
- (11) Substitution of λ in $P(t | \mathbf{d})'$.

Relevance Function ρ : Example

Let q = president lincoln and let $d_1 \in D$ be a document from a collection D.

Assumptions:

□ $tf(president, d_1) = 15$ and $\sum_{d \in D} tf(president, d) = 160,000$ □ $tf(lincoln, d_1) = 25$ and $\sum_{d \in D} tf(lincoln, d) = 2,400$ □ $|d_1| = 1,800$ and |D| = 500,000 at $|d|_{avg} = 2,000$, yielding 10^9 terms. □ $\alpha = |d|_{avg} = 2,000$

$$\rho(\mathbf{d}_1, \mathbf{q}) = \log \frac{15 + 2000 \cdot (1.6 \cdot 10^5/10^9)}{1800 + 2000} + \log \frac{25 + 2000 \cdot (2400/10^9)}{1800 + 2000}$$
$$= \log(15.32/3800) + \log(25.005/3800)$$
$$= -5.51 + -5.02$$
$$= -10.53$$

Logarithmization yields negative relevance scores; recall that only the ranking among documents is important, not the scores themselves.

Relevance Function ρ : Example

Let q = president lincoln and let $d_1 \in D$ be a document from a collection D.

Assumptions:

□ $tf(president, d_1) = 15$ and $\sum_{d \in D} tf(president, d) = 160,000$ □ $tf(lincoln, d_1) = 25$ and $\sum_{d \in D} tf(lincoln, d) = 2,400$ □ $|d_1| = 1,800$ and |D| = 500,000 at $|d|_{avg} = 2,000$, yielding 10^9 terms. □ $\alpha = |d|_{avg} = 2,000$

D	president	lincoln	LM #	# BM25 #
d_1	15	25	-10.53 1	20.66 1
d_2	15	1	-13.75 3	3 12.74 4
d_3	15	0	-19.05 5	5 5.00 5
d_4	1	25	-12.99 2	2 18.20 2
d_5	0	25	-14.40 4	15.66 3

Relevance Function ρ : Summary

$$\rho(\mathbf{d}, \mathbf{q}) = P(\mathbf{d} \mid \mathbf{q}) \propto P(\mathbf{d}) \cdot \prod_{i=1}^{|q|} \frac{\mathsf{tf}(t_i, d) + \alpha \cdot \frac{\sum_{d \in D} \mathsf{tf}(t_i, d)}{\sum_{d \in D} |d|}}{|d| + \alpha}$$

Assumptions:

- 1. The user has a mental model of the desired document and generates the query from that model.
- 2. The equation represents a probability estimate that the document the user had in mind was in fact this one.
- 3. Independence of word occurrence in documents.
- 4. Terms not in query q are equally likely to occur in relevant and irrelevant documents.
- 5. The prior $P(\mathbf{d})$ may be chosen uniform for all documents, or to boost more important documents.

Discussion

Advantages:

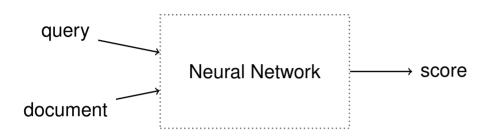
- Mathematically precise, conceptually simple, computationally tractable, and intuitively appealing
- Competitive retrieval performance

Disadvantages:

- □ Requires extensive tuning
- Assumption of equivalence between document and information need representation is unrealistic
- Difficult to represent the fact that a query is just one of many possible queries to describe a particular need

Overview

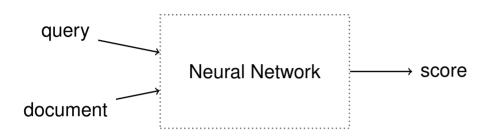
Goal:



Problem: How do we represent text so we can feed it to the neural network?

Overview

Goal:



Problem: How do we represent text so we can feed it to the neural network? Solution: Turn words into numbers.

Representing Words

apples are great

Word Embeddings Representing Words

apples are great

Assign each word a random value.

apples	→	6.3
are	→	-3.5
great	\rightarrow	4.2

Word Embeddings Representing Words

apples are great

apples are awesome

Assign each word a random value.

apples	→	6.3
are	→	-3.5
great	→	4.2
awesome	→	-32.1

Word Embeddings **Representing Words**

apples are great

apples are awesome

Assign each word a random value.

apples	→	6.3
are	→	-3.5
great	→	4.2
awesome	→	-32.1

Problems:

- great and awesome mean similar things and used in similar ways.
- They are likely to have very different values.
- Bad for neural networks, requiring more complexity and training.

Developing a Better Representation

How can we let similar words have similar values?

→ Learning how to use one word helps use the other at the same time.

Developing a Better Representation

How can we let similar words have similar values?

→ Learning how to use one word helps use the other at the same time.

Words can be used in many contexts, pluralised, and so on.

→ Assign each word multiple values for different contexts.

Developing a Better Representation

How can we let similar words have similar values?

→ Learning how to use one word helps use the other at the same time.

Words can be used in many contexts, pluralised, and so on.

→ Assign each word multiple values for different contexts.

How to decide which words are similar? How to learn multiple values?

→ Neural network + clever training.

Training a Neural Network

Training data: apples are great, bananas are great.

Training a Neural Network

Training data: apples are great, bananas are great.

Inputs Activations apples y=x w_1 w_2 w_3 great

bananas

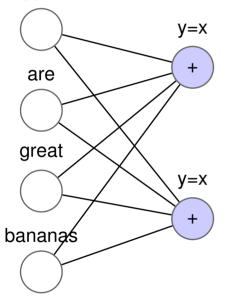
- □ Four unique inputs, each corresponding to a word.
- □ Linear activation function does nothing, just a place to do addition.
- Weights randomly initialised and optimised with backpropagation.

Training a Neural Network

Training data: apples are great, bananas are great.

Inputs Activations

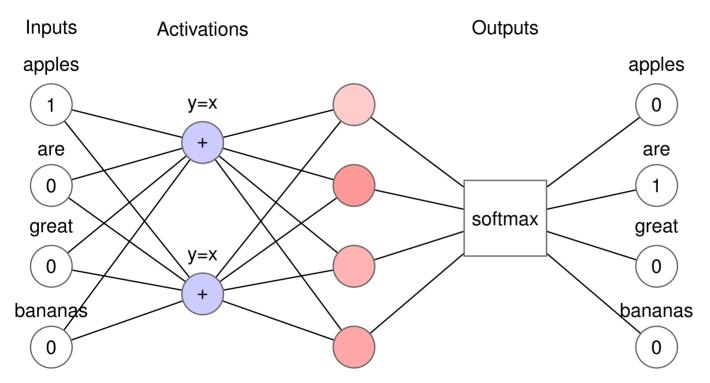
apples



- To represent words with multiple values, add additional activation functions.
 Each activation function is approximated with another weight for each word
- □ Each activation function is associated with another weight for each word.

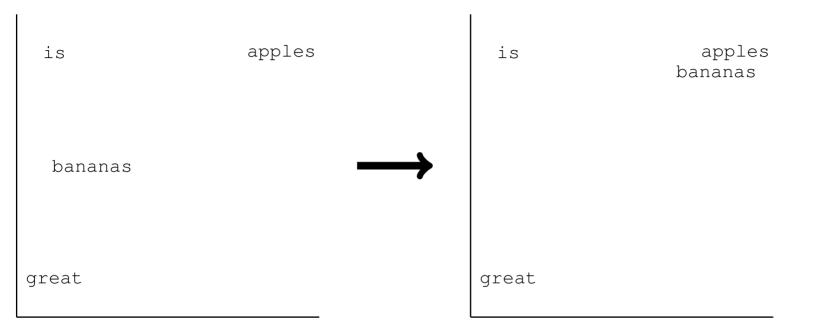
Training a Neural Network

Training data: apples are great, bananas are great.



- □ Use input word to predict next word in phrase → apples
- □ We want the largest output value after softmax to be the target word.
- □ Cross entropy loss with backpropagation to optimise weights.

Visualising Word Embeddings



□ Weights going into activation layer are the values associated with each word.

- □ When words appear in similar contexts, values (weights) become similar.
- □ All the weights for a given word are called the **word embedding**.

Summary

Word embeddings let us represent text as values for machine learning problems.

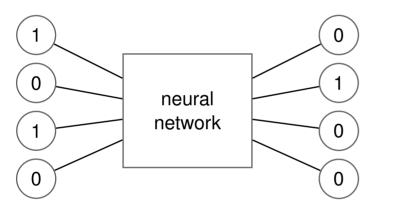
- □ Rather than using random values, use a neural network to learn values.
- □ Use context of words in training dataset to optimise weights for embeddings.
- □ Similar words get similar embeddings, which helps with training.

Problem: Just predicting the next word doesn't provide much context.

word2vec

Continuous Bag of Words (CBOW)

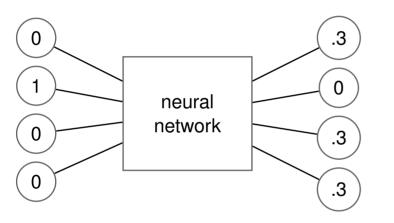
→ Increase context by using surrounding words to predict what occurs in the middle.



word2vec

Skip gram

→ Increase context by using word in the middle to predict surrounding words.



Efficiently Training word2vec

- □ In practice, there are hundreds of activation functions.
- □ And significantly more training data (e.g., all of Wikipedia).
- □ Vocabulary (input size) is much larger, typically 3,000,000 words and phrases.

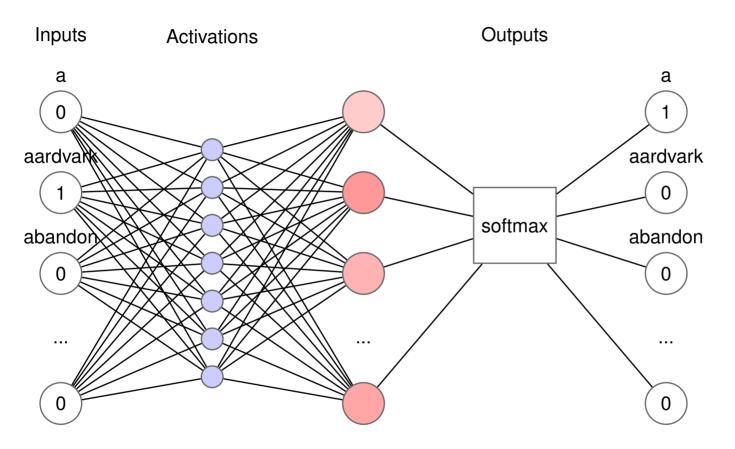
Total weights to optimise:

 $3,000,000 \cdot 100 \cdot 2 = 600,000,000$

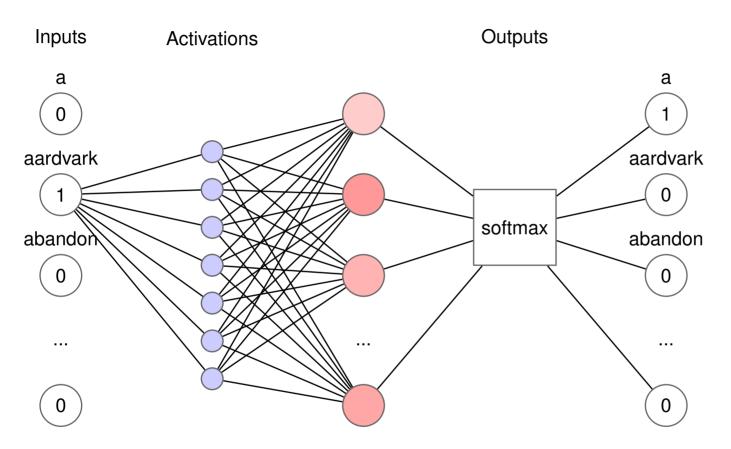
3M words, 100 activations (times 2 for input+output).

Solution: negative sampling.

Efficiently Training word2vec

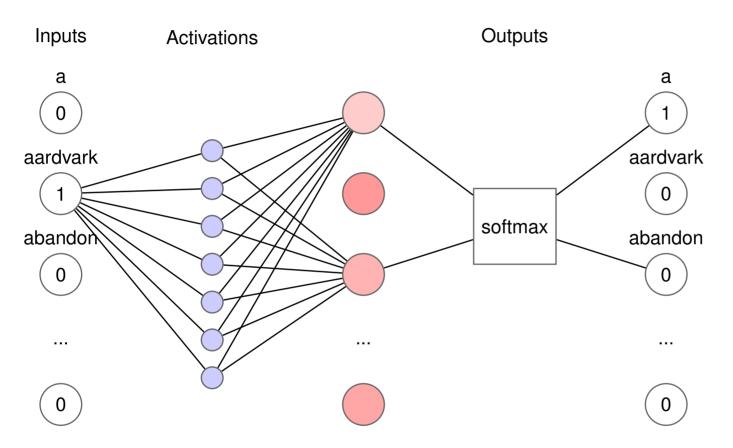


Efficiently Training word2vec



- □ Drop weights that do not contribute to prediction.
- □ Still left with over 300,000,000 weights to optimise.

Efficiently Training word2vec



□ Randomly select subset of words will be 'negative' samples.

- □ a is still our target word, but now abandon is a negative sample.
- □ Now only need to optimise approximately 300 weights per step.

Question 1: How would you design a ranking function with word embeddings alone?

Question 2: How could you represent queries and documents with embeddings?

Question 3: How would you train a neural ranking model if you had query and document embeddings?

Relevant papers:

- https://dl.acm.org/doi/pdf/10.1145/2838931.2838936
- https://cs.stanford.edu/~quocle/paragraph_vector.pdf