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Language Models
Background

Language models in general include methods to represent the syntactical structures
of languages to study them, and to solve natural language processing tasks.

A key goal of modeling a language is to solve the membership problem:
Given a string and a language, decide whether the string belongs to the language.

Two complementary approaches have been pursued:

q Formal languages
Theoretical approach with an explicit grammar specification and applications in comparably
small, controlled languages (e.g., query languages, programming languages).

q Statistical language models
Probabilistic approach where grammar is captured only implicitly by analyzing large text
collections. Can be applied in less controlled situations.

Important applications of statistical language models:

q Part-of-speech tagging
q Machine translation

q Speech and handwriting recognition
q Information retrieval
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Language Models
Basics: Grammar

q Alphabet ⌃.
An alphabet ⌃ is a non-empty set of signs or symbols.

q Word w.
A word w is a finite sequence of symbols from ⌃. The length of a word |w| is
the number of symbols it is made of.

" denotes the empty word; it is the only word of length 0.
⌃⇤ denotes the set of all words over ⌃.

q Language L.
A language L is a set of words over an alphabet ⌃.

q Grammar G.
A grammar G is a calculus to define a language—and a set of rules by which
words can be derived. The language corresponding to G contains all words
that can be generated using its rules.
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Language Models
Example: Deterministic Language Model

Grammar G1 as deterministic finite automaton:

Simon says stop

Generated language:

q L(G1) = {Simon says stop}

q How to allow for other “Simon says” sentences?
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Language Models
Example: Deterministic Language Model

Grammar G2 as deterministic finite automaton:

Simon says verb

Generated language:

q Let verb = {jump, run, ...} denote the set of all verbs.

q L(G2) contains Simon says sentences, e.g.:
Simon says jump, Simon says run, ...

q |L(G2)| = |verb|
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Language Models
Example: Deterministic Language Model

Grammar G2 as deterministic finite automaton:

Simon says verb

Generated language:

q Let verb = {jump, run, ...} denote the set of all verbs.

q L(G2) contains Simon says sentences, e.g.:
Simon says jump, Simon says run, ...

q |L(G2)| = |verb|

q Is the sentence Simon says science member of L(G2)?
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Language Models
Example: Deterministic Language Model

Grammar G2 as deterministic finite automaton:

Simon says verb

Generated language:

q Let verb = {jump, run, ...} denote the set of all verbs.

q L(G2) contains Simon says sentences, e.g.:
Simon says jump, Simon says run, ...

q |L(G2)| = |verb|

q Is the sentence Simon says science member of L(G2)?

I’m gonna have to science the shit out of this.
Mark Watney in The Martian

‹ Allowing every word would still result in exceedingly unlikely sentences.
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Language Models
Example: Statistical Language Model

Grammar G3 as probabilistic automaton:

Simon says w

where w is a random variable over a vocabulary T .

w 2 T P (w)

jump 0.05
run 0.03

... ...
science 0.002... ...

Generated language:

q L(G3) contains every three-word sentence starting with Simon says
followed by a word w from T with probability P (w) > ⌧ where ⌧ is a threshold.

q Put another way, G3 maps every sentence s that can be formed over its
vocabulary ⌃ to a probability P (s) so that

X

s2⌃⇤
P (s) = 1

In general, probabilistic automata can be used to generate arbitrary documents.
IR:III-169 Retrieval Models © HAGEN/POTTHAST/STEIN 2023



Language Models
Example: Statistical Language Model

Grammar G4 as probabilistic automaton:

w

where w is a random variable over a vocabulary T .

w 2 T P (w)

? 0.2
the 0.2
a 0.1
that 0.04
says 0.03

w 2 T P (w)

likes 0.02
Simon 0.01
Mark 0.01
science 0.002... ...

Generated language:

q ? denotes the probability that the automaton stops.

q L(G4) contains all sentences that can be formed over the vocabulary T ,
assigning a membership probability to each one, e.g.:
s = Simon says that Mark likes science ?
P (s) = 0.01 · 0.03 · 0.04 · 0.01 · 0.02 · 0.01 · 0.2 = 0.0000000000048 = 4.8 · 10�12

q Suppose every document were generated by its own language model d.

‹ Given a query q, P (d1 | q) > P (d2 | q) may indicate that d1 is more relevant to
q than d2.

IR:III-170 Retrieval Models © HAGEN/POTTHAST/STEIN 2023



Language Models
Retrieval Model R = hD,Q, ⇢i [

::::::::
Generic

:::::::
Model] [

::::::::
Boolean] [

:::::
VSM] [

::::
BIM] [

::::::
BM25] [

:::
LSI] [

::::
ESA] [LM]

Document representations D.

q T = {t1, . . . , tm} is the set of m index terms (stemmed words).

q p(t | d) is the probability of generating t given d.

q d = {(t1, p(t1 | d), . . . , (tm, p(tm | d))} is a probability distribution over T .

Query representations Q.

q q = (t1, . . . , t|q|), where ti 2 T , is a sequence of index terms.

Relevance function ⇢.

q ⇢(d, q) = P (d | q), the query likelihood model.

q R
+ is a set of documents relevant to q obtained via relevance feedback.

q R+ = {(t1, p(t1 | R+), . . . , (tm, p(tm | R+))} is a probability distribution over T .

q ⇢(d, q) = 'KL(d,R+), the relevance model.
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Language Models
Relevance Function ⇢: Derivation

Let d denote a language model for document d, and q the sequence of query terms
from query q. Then the query likelihood model is derived as follows:

P (d | q) =
P (q | d) · P (d)

P (q)
(1)

rank
= P (q | d) · P (d) (2)

= P (q | d) (3)

(1) Application of Bayes’ rule.

(2) Rank-preserving omission of P (q); it does not depend on d.

(3) Assume P (d) is uniform for all d 2 D, thereby canceling its influence.
This assumption is not required; as a prior, P (d) can be used as a weight of relative
importance of d (e.g., PageRank, quality, etc.).
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Language Models
Relevance Function ⇢: Derivation

Given a language model d of document d and a sequence q of the terms in query q,
compute the probability that q has been generated by d.

P (q | d) = P (t1, . . . , t|q| | d) (4)

=

|q|Y

i=1

P (ti | d) (5)

=
Y

t2q
P (t | d)tf (t,q) (6)

(4) Inflating q.

(5) Assuming independence between terms.
Rank-preserving logarithmization to handle small probabilities.

(6) Combine duplicate occurrences of term t in query q.
This corresponds to the multinomial distribution, albeit omitting its factor |d|/

Q
t2q tf (t, q),

which counts the permutations of q’s terms but is constant for q.
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Language Models
Relevance Function ⇢: Derivation

Given a language model d of document d and a sequence q of the terms in query q,
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Language Models
Relevance Function ⇢: Derivation

Given a language model d of document d and a sequence q of the terms in query q,
compute the probability that q has been generated by d.

P (q | d) = P (t1, . . . , t|q| | d) (4)

rank
=

|q|X

i=1

logP (ti | d) (5)

=
Y

t2q
P (t | d)tf (t,q) (6)

(4) Inflating q.

(5) Assuming independence between terms.
Rank-preserving logarithmization to handle small probabilities.

(6) Combine duplicate occurrences of term t in query q.
This corresponds to the multinomial distribution, albeit omitting its factor |d|/

Q
t2q tf (t, q),

which counts the permutations of q’s terms but is constant for q.
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Language Models
Relevance Function ⇢: Estimation

Let t denote a term from the set of index terms T of document collection D. The
construction of a language model d to represent document d is done as follows.

P (t | d) =
tf (t, d)
|d| , where

X

t2T
P (t | d) = 1 (7)

P (t | D) =

P
d2D tf (t, d)P

d2D |d| , where
X

t2T
P (t | D) = 1 (8)

P (t | d)0 = (1� �) · P (t | d) + � · P (t | D) (9)

(7) Maximum likelihood estimation of t’s probability under the assumed language
model d for document d’s topic, given the observed sample d.
Problem: P (t | d) = 0 for t /2 d, causing P (q | d) = 0 if t 2 q.

(8) Maximum likelihood estimation of t’s probability in a language model D for D.

(9) Jelinek-Mercer smoothing: linear interpolation of language models d and D.
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Language Models
Relevance Function ⇢: Estimation

Taking into account the length of a document d yields an alternative smoothing
method.

P (t | d)0 = (1� �) · P (t | d) + � · P (t | D) (9)

� =
↵

|d| + ↵
(10)

P (t | d)00 =
tf (t, d) + ↵ · P (t | D)

|d| + ↵
(11)

(9) Jelinek-Mercer smoothing: linear interpolation of language models d and D.

(10) Dirichlet smoothing: adjust � with respect to the length of document d. The
longer a document d, the more trustworthy its language model d becomes.

(11) Substitution of � in P (t |d)0.
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Language Models
Relevance Function ⇢: Example

Let q = president lincoln and let d1 2 D be a document from a collection D.

Assumptions:

q tf (president, d1) = 15 and
P

d2D tf (president, d) = 160, 000

q tf (lincoln, d1) = 25 and
P

d2D tf (lincoln, d) = 2, 400

q |d1| = 1, 800 and |D| = 500, 000 at |d|avg = 2, 000, yielding 109 terms.
q ↵ = |d|avg = 2, 000

⇢(d1,q) = log
15 + 2000 · (1.6 · 105/109)

1800 + 2000
+ log

25 + 2000 · (2400/109)
1800 + 2000

= log(15.32/3800) + log(25.005/3800)

= �5.51 + �5.02

= �10.53

Logarithmization yields negative relevance scores; recall that only the ranking
among documents is important, not the scores themselves.
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Language Models
Relevance Function ⇢: Example

Let q = president lincoln and let d1 2 D be a document from a collection D.

Assumptions:

q tf (president, d1) = 15 and
P

d2D tf (president, d) = 160, 000

q tf (lincoln, d1) = 25 and
P

d2D tf (lincoln, d) = 2, 400

q |d1| = 1, 800 and |D| = 500, 000 at |d|avg = 2, 000, yielding 109 terms.
q ↵ = |d|avg = 2, 000

D president lincoln LM # BM25 #
d1 15 25 -10.53 1 20.66 1
d2 15 1 -13.75 3 12.74 4
d3 15 0 -19.05 5 5.00 5
d4 1 25 -12.99 2 18.20 2
d5 0 25 -14.40 4 15.66 3
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Language Models
Relevance Function ⇢: Summary

⇢(d,q) = P (d | q) / P (d) ·
|q|Y

i=1

tf (ti, d) + ↵ ·
P

d2D tf (ti,d)P
d2D |d|

|d| + ↵

Assumptions:

1. The user has a mental model of the desired document and generates the
query from that model.

2. The equation represents a probability estimate that the document the user
had in mind was in fact this one.

3. Independence of word occurrence in documents.

4. Terms not in query q are equally likely to occur in relevant and irrelevant
documents.

5. The prior P (d) may be chosen uniform for all documents, or to boost more
important documents.
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Language Models
Discussion

Advantages:

q Mathematically precise, conceptually simple, computationally tractable, and
intuitively appealing

q Competitive retrieval performance

Disadvantages:

q Requires extensive tuning

q Assumption of equivalence between document and information need
representation is unrealistic

q Difficult to represent the fact that a query is just one of many possible queries
to describe a particular need
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Word Embeddings
Overview

Goal:

Neural Network

query

document

score

Problem: How do we represent text so we can feed it to the neural network?
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Word Embeddings
Overview

Goal:

Neural Network

query

document

score

Problem: How do we represent text so we can feed it to the neural network?

Solution: Turn words into numbers.
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Word Embeddings
Representing Words

apples are great
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Word Embeddings
Representing Words

apples are great

Assign each word a random value.

q apples ‹ 6.3
q are ‹ -3.5
q great ‹ 4.2
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Word Embeddings
Representing Words

apples are great

apples are awesome

Assign each word a random value.

q apples ‹ 6.3
q are ‹ -3.5
q great ‹ 4.2
q awesome ‹ -32.1
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Word Embeddings
Representing Words

apples are great

apples are awesome

Assign each word a random value.

q apples ‹ 6.3
q are ‹ -3.5
q great ‹ 4.2
q awesome ‹ -32.1

Problems:

q great and awesome mean similar things and used in similar ways.
q They are likely to have very different values.
q Bad for neural networks, requiring more complexity and training.
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Word Embeddings
Developing a Better Representation

How can we let similar words have similar values?

‹ Learning how to use one word helps use the other at the same time.
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Word Embeddings
Developing a Better Representation

How can we let similar words have similar values?

‹ Learning how to use one word helps use the other at the same time.

Words can be used in many contexts, pluralised, and so on.

‹ Assign each word multiple values for different contexts.
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Word Embeddings
Developing a Better Representation

How can we let similar words have similar values?

‹ Learning how to use one word helps use the other at the same time.

Words can be used in many contexts, pluralised, and so on.

‹ Assign each word multiple values for different contexts.

How to decide which words are similar? How to learn multiple values?

‹ Neural network + clever training.
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Word Embeddings
Training a Neural Network

Training data: apples are great, bananas are great.
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Word Embeddings
Training a Neural Network

Training data: apples are great, bananas are great.

Inputs

apples

are

great

bananas

Activations

+

y=x
w1

w2

w3

w4

q Four unique inputs, each corresponding to a word.
q Linear activation function does nothing, just a place to do addition.
q Weights randomly initialised and optimised with backpropagation.
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Word Embeddings
Training a Neural Network

Training data: apples are great, bananas are great.

Inputs

apples

are

great

bananas

Activations

+

y=x

+

y=x

q To represent words with multiple values, add additional activation functions.
q Each activation function is associated with another weight for each word.
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Word Embeddings
Training a Neural Network

Training data: apples are great, bananas are great.

Inputs

1

apples

0

are

0

great

0

bananas

Activations

+

y=x

+

y=x

Outputs

softmax

0

apples

1

are

0

great

0

bananas

q Use input word to predict next word in phrase ‹ apples

q We want the largest output value after softmax to be the target word.
q Cross entropy loss with backpropagation to optimise weights.
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Word Embeddings
Visualising Word Embeddings

great

bananas

is apples

great

bananas
is apples

q Weights going into activation layer are the values associated with each word.

q When words appear in similar contexts, values (weights) become similar.

q All the weights for a given word are called the word embedding.
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Word Embeddings
Summary

Word embeddings let us represent text as values for machine learning problems.

q Rather than using random values, use a neural network to learn values.

q Use context of words in training dataset to optimise weights for embeddings.

q Similar words get similar embeddings, which helps with training.

Problem: Just predicting the next word doesn’t provide much context.
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Word Embeddings
word2vec

Continuous Bag of Words (CBOW)

‹ Increase context by using surrounding words to predict what occurs in the middle.

1

0

1

0

neural
network

0

1

0

0
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Word Embeddings
word2vec

Skip gram

‹ Increase context by using word in the middle to predict surrounding words.

0

1

0

0

neural
network

.3

0

.3

.3
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Word Embeddings
Efficiently Training word2vec

q In practice, there are hundreds of activation functions.
q And significantly more training data (e.g., all of Wikipedia).
q Vocabulary (input size) is much larger, typically 3,000,000 words and phrases.

Total weights to optimise:

3, 000, 000 · 100 · 2 = 600, 000, 000

3M words, 100 activations (times 2 for input+output).

Solution: negative sampling.
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Word Embeddings
Efficiently Training word2vec

Inputs

0

a

1

aardvark

0

abandon

...

0

Activations Outputs

...

softmax

1

a

0

aardvark

0

abandon

...

0
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Word Embeddings
Efficiently Training word2vec

Inputs

0

a

1

aardvark

0

abandon

...

0

Activations Outputs

...

softmax

1

a

0

aardvark

0

abandon

...

0

q Drop weights that do not contribute to prediction.
q Still left with over 300,000,000 weights to optimise.
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Word Embeddings
Efficiently Training word2vec

Inputs

0

a

1

aardvark

0

abandon

...

0

Activations Outputs

...

softmax

1

a

0

aardvark

0

abandon

...

0

q Randomly select subset of words will be ‘negative’ samples.
q a is still our target word, but now abandon is a negative sample.
q Now only need to optimise approximately 300 weights per step.
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Harry
Question 1: How would you design a ranking function with word embeddings alone?

Question 2: How could you represent queries and documents with embeddings?

Question 3: How would you train a neural ranking model if you had query and document embeddings?

Relevant papers:
- https://dl.acm.org/doi/pdf/10.1145/2838931.2838936
- https://cs.stanford.edu/~quocle/paragraph_vector.pdf


