

Exercise 1 : Probability Ranking Principle

- (a) What does the Probability Ranking Principle (PRP) state?
- (b) What assumptions does it make?
- (c) Give an example where the PRP fails because the assumptions are not fulfilled.

Exercise 2 : Boolean Retrieval

Figure 1 illustrates a query. (i, j, k) denotes whether term i, j, k is present. What query is illustrated?

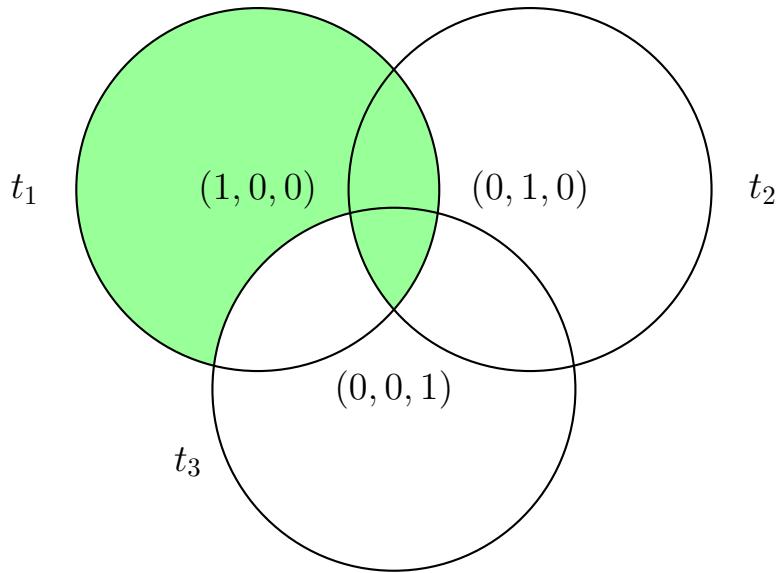


Figure 1: Boolean retrieval regions for t_1 , t_2 , and t_3 .

Exercise 3 : Formal Ranker

In the lecture, we defined retrieval models for D, Q as a tuple $\mathcal{R} = \langle \mathbf{D}, \mathbf{Q}, \rho \rangle$. What does each of these symbols, $D, Q, \mathbf{D}, \mathbf{Q}$, and ρ , denote?

Exercise 4 : Okapi BM25

Okapi BM25 is a probabilistic ranking function derived from the Binary Independence Model [IR:III]. The following relevance ranking function ρ is used in the Okapi retrieval system (also known as Binary Independence Model [IR:III-47]):

$$\rho(\mathbf{d}, \mathbf{q}) = \sum_{t \in \mathbf{q}} \omega_{\text{BM25}}(t, d, D),$$

where D denotes the document collection to be indexed [IR:III-93].

The BM25 term-weighting function is defined as

$$\omega_{\text{BM25}}(t, d, D) = \omega_{\text{dtf}}(t, d) \cdot \omega_{\text{qtf}}(t, q) \cdot \omega_{\text{BIM}}(t, D).$$

The individual components are given by

$$\begin{aligned}\omega_{\text{dtf}}(t, d) &= \frac{(k_1 + 1) \cdot \text{tf}(t, d)}{k_1 \left((1 - b) + b \cdot \frac{|d|}{|d|_{\text{avg}}} \right) + \text{tf}(t, d)}, \\ \omega_{\text{qtf}}(t, q) &= \frac{(k_2 + 1) \cdot \text{tf}(t, q)}{k_2 + \text{tf}(t, q)}, \\ \omega_{\text{BIM}}(t, D) &= \log \frac{|D| - \text{df}(t, D)}{\text{df}(t, D)}.\end{aligned}$$

- (a) Provide a high-level intuition for each component $\omega_{\text{dtf}}(t, d)$, $\omega_{\text{qtf}}(t, q)$, and $\omega_{\text{BIM}}(t, D)$.
- (b) Explain $\omega_{\text{dtf}}(t, d)$ and its purpose.
- (c) Explain $\omega_{\text{qtf}}(t, q)$ and its purpose.
- (d) Explain $\omega_{\text{BIM}}(t, D)$ and its purpose.
- (e) Explain the role of the parameters k_1 , k_2 , and b .

Exercise 5 : BM25 & TF-IDF

The following relevance ranking function ρ is used in the Okapi retrieval system:

$$\rho(\mathbf{d}, \mathbf{q}) = \sum_{t \in \mathbf{q}} \omega_{\text{BM25}}(t, d, D),$$

where D denotes the document collection to be indexed [IR:III-93].

The BM25 term-weighting function is defined as

$$\omega_{\text{BM25}}(t, d, D) = \omega_{\text{dtf}}(t, d) \cdot \omega_{\text{qtf}}(t, q) \cdot \omega_{\text{BIM}}(t, D).$$

The individual components are given by

$$\begin{aligned}\omega_{\text{dtf}}(t, d) &= \frac{(k_1 + 1) \cdot \text{tf}(t, d)}{k_1 \left((1 - b) + b \cdot \frac{|d|}{|d|_{\text{avg}}} \right) + \text{tf}(t, d)}, \\ \omega_{\text{qtf}}(t, q) &= \frac{(k_2 + 1) \cdot \text{tf}(t, q)}{k_2 + \text{tf}(t, q)}, \\ \omega_{\text{BIM}}(t, D) &= \log \frac{|D| - \text{df}(t, D)}{\text{df}(t, D)}.\end{aligned}$$

For comparison, the following term-weighting function $\omega(t)$ is used, for example, in the Vector Space Model:

$$\omega(t) = \text{tf}(t, d) \cdot \text{idf}(t, D),$$

where $\text{tf}(t, d)$ denotes the normalized term frequency of term t in document d [IR-III-35], and

$$\text{idf}(t, D) = \log \frac{|D|}{\text{df}(t, D)}$$

denotes the inverse document frequency of term t in the document collection D .

- (a) In which aspects do TF-IDF and BM25 differ?
- (b) Why is the term frequency $tf(t, d)$ normalized in TF-IDF?
- (c) How can the parameters k_1 , k_2 , and b be chosen for BM25?
- (d) What are the strengths of BM25?
- (e) What aspects should be considered when comparing other ranking functions to BM25?

Exercise 6 : Different Ranking Approaches

Match the following terms from each group.

Type	Formula	Model(s)
Logical		
Algebraic		
Probabilistic		
Bayesian		
Information Theoretic		

Formulae	Models
(a) $-\log_2 P(\mathbf{d} \mid tf(t_1), \dots, tf(t_{ \mathbf{q} }))$	(a) BM25
(b) $\mathcal{I}(\mathbf{d} \rightarrow \mathbf{q})$	(b) monoT5
(c) $P(\mathbf{rel}(d, q) = 1 \mid \mathbf{d}, \mathbf{q})$	(c) duoT5
(d) $\varphi(\mathbf{d}, \mathbf{q})$	(d) TF-IDF
(e) $P(\mathbf{d} \mid \mathbf{q})$	(e) Boolean Retrieval
	(f) Language Models