

Information Retrieval

Exercise – Winter term 2025/2026

klara.gutekunst@uni-kassel.de

Agenda

1. Research Questions

2. Hypothesis Testing

3. Assignment

4. Inspiration

Research Questions

What is a good research question?

Research Questions

- A good research question... [Bartos 1992]
 - ... asks about the relationship between two or more variables.
 - ... is testable (i.e., it is possible to collect data to answer the question).
 - ... is stated clearly and in the form of a question.
 - ... does not pose an ethical or moral problem for implementation.
 - ... is specific and restricted in scope.
 - ... identifies exactly what is to be solved.
- Examples:
 - *Poor:*
“What is the effectiveness of parent education when given problem children?”
 - *Good:*
“What is the effect of the **STEP** parenting program on the ability of parents to use natural, logical consequences (as opposed to punishment) with their child who has been diagnosed with bipolar disorder?”

Hypothesis Testing

What is a good hypothesis?
How to test a hypothesis?

Hypothesis Testing

- A good hypothesis...
 - ... is founded in a problem statement and supported by research.
 - ... is testable.
 - ... states an expected relationship between variables.
 - ... is stated as simply and concisely as possible.
- Hypothesis testing:
 - Step 1: What are your variables? (nominal, ordinal, scale, ratio)
 - Step 2: Measure the variables (Are aggregated measures enough?)
 - Step 3: Significance test (Null hypothesis? Which α level? Which significance test?) [\[lecture video 2024\]](#)

Hypothesis Testing

For the following hypothesis:

We hypothesize that the retrieval pipeline using query expansion combined with the MonoT5 reranker achieves a significantly different nDCG@10 compared to BM25 paired only with the MonoT5 reranker.

Hypothesis Testing

For the following hypothesis:

We hypothesize that the retrieval pipeline using query expansion combined with the MonoT5 reranker achieves a significantly different nDCG@10 compared to BM25 paired only with the MonoT5 reranker.

Person X has formulated the following null hypothesis H_0 :

The retrieval pipeline using query expansion with the MonoT5 reranker yields an nDCG@10 that is not significantly different from the nDCG@10 achieved by BM25 with the MonoT5 reranker.

→ Our goal is to falsify H_0 .

Hypothesis Testing

For the following hypothesis:

We hypothesize that the retrieval pipeline using query expansion combined with the MonoT5 reranker achieves a significantly different nDCG@10 compared to BM25 paired only with the MonoT5 reranker.

Person X has formulated the following null hypothesis H_0 :

The retrieval pipeline using query expansion with the MonoT5 reranker yields an nDCG@10 that is not significantly different from the nDCG@10 achieved by BM25 with the MonoT5 reranker.

Do you see any problems?

Hypothesis Testing

Person X has formulated the following null hypothesis H_0 :

The retrieval pipeline using query expansion with the MonoT5 reranker yields an nDCG@10 that is not significantly different from the nDCG@10 achieved by BM25 with the MonoT5 reranker.

Do you see any problems?

- Which retrieval pipeline is being referred to?
- Which query expansion method is used?
- What re-ranking depth is applied?
- What significance level α is assumed?
- Which dataset is being evaluated?
- ...

The vaguer the hypothesis, the harder it is to reject H_0 .

Hypothesis Testing

Person X has formulated the following null hypothesis H_0 :

The retrieval pipeline using query expansion with the MonoT5 reranker yields an nDCG@10 that is not significantly different from the nDCG@10 achieved by BM25 with the MonoT5 reranker.

How could a better null hypothesis H_0 sound?

There is no statistically significant difference in nDCG@10 on **MS MARCO** between (i) the **BM25-based retrieval pipeline** described in Section X with **RM3 query expansion** and followed by **re-ranking the top-100** initial retrieval results with a monoT5 reranker[**footnote** with model], and (ii) the same pipeline without RM3 query expansion ($\alpha = 0.05$) .

Multiple Hypotheses

Consider the research question: Does the MonoT5 reranker improve rankings?

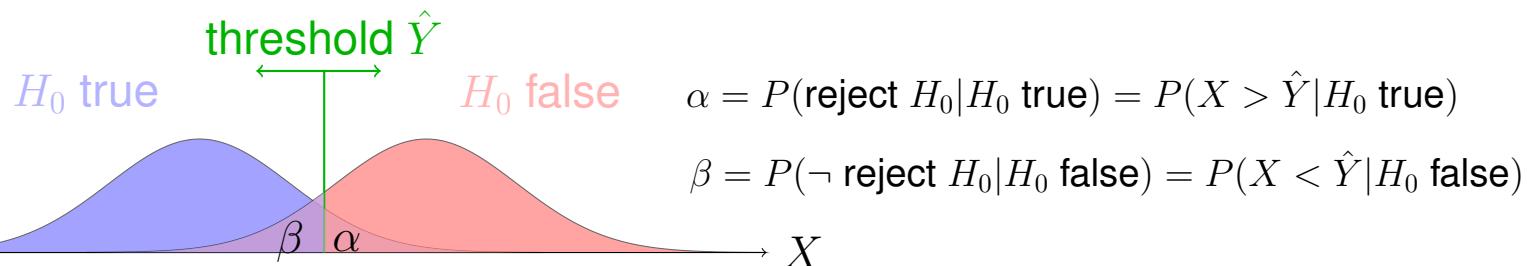
You may define multiple hypotheses of different strength:

1. There is a statistically significant difference ...
2. There is a statistically significant improvement ...

You may define multiple null hypotheses of different strength:

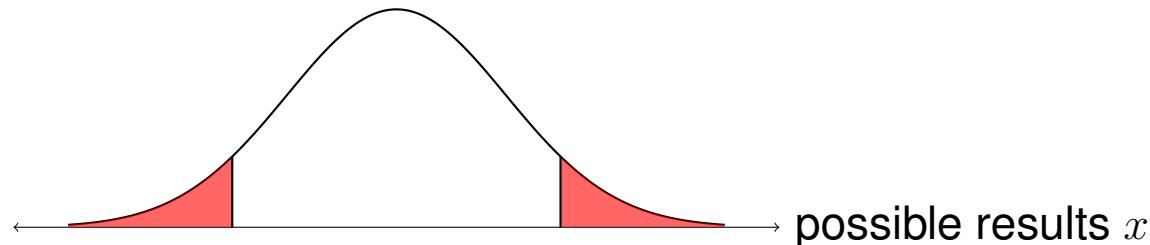
- ◻ H_0^0 : There is no statistically significant difference in nDCG@10 on ...
- ◻ H_0^1 : There is no statistically significant improvement in nDCG@10 on ...

Each hypothesis requires its own significance test to attempt to falsify it.

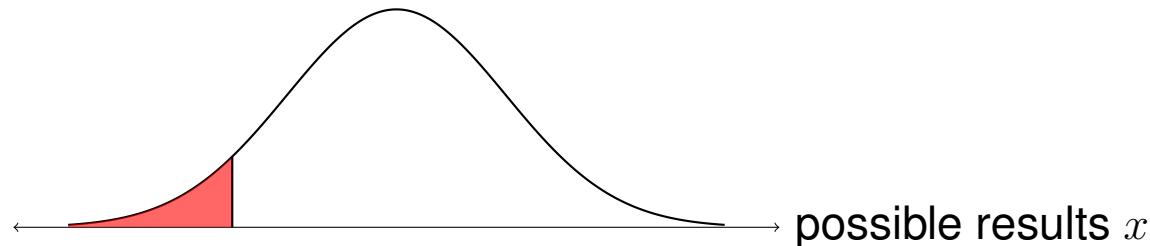
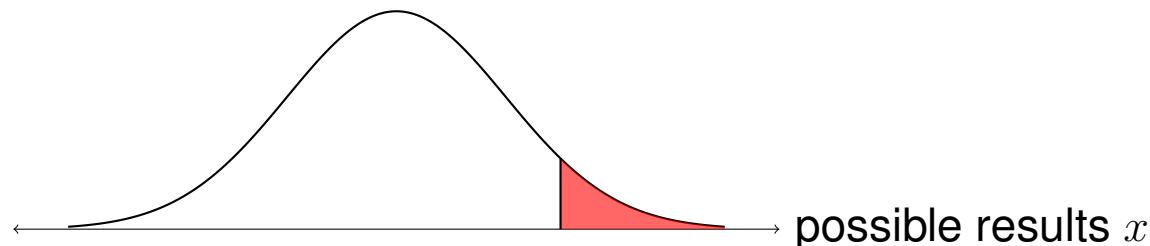

Using both a weaker and a stronger hypothesis is advantageous: even if you cannot show a performance improvement (i.e., cannot reject H_0^1), you may still be able to reject the weaker hypothesis (i.e., H_0^0), which still supports a meaningful conclusion.

Significance test

Decide whether the data provide sufficient evidence to reject a particular null hypothesis H_0 .


- Probabilities α, p
- $\alpha = P(\text{reject } H_0 | H_0 \text{ true})$
- $p = P(X = x | H_0 \text{ true})$: Obtain a result at least as extreme, given H_0 is true
- Result is statistically significant, if $p \leq \alpha$

	H_0 is true	H_0 is false
\neg Reject H_0	True Negative probability $1 - \alpha$	Type II error probability β
Reject H_0	Type I error probability α	True Positive probability $1 - \beta$

Significance test

Two-tailed test tests whether the observed statistic X is *either* unusually small or unusually large under H_0 .

One-tailed test tests whether X is unusually large (right tail) or unusually small (left tail) under H_0 .

Significance test

- The choice of statistical test depends on, among others, the scaling of the data [\[Wikipedia\]](#)
 - Interval data for which the sampling distribution of the test statistic is approximately normal ...
 - ... with *unknown* variance → Student's t-test
 - ... with *known* population mean and variance → Z-test
 - Ordinal data → Sign test / ...
 - Nominal data → McNemar's test / Chi-squared test / ...
 - ...

Example:

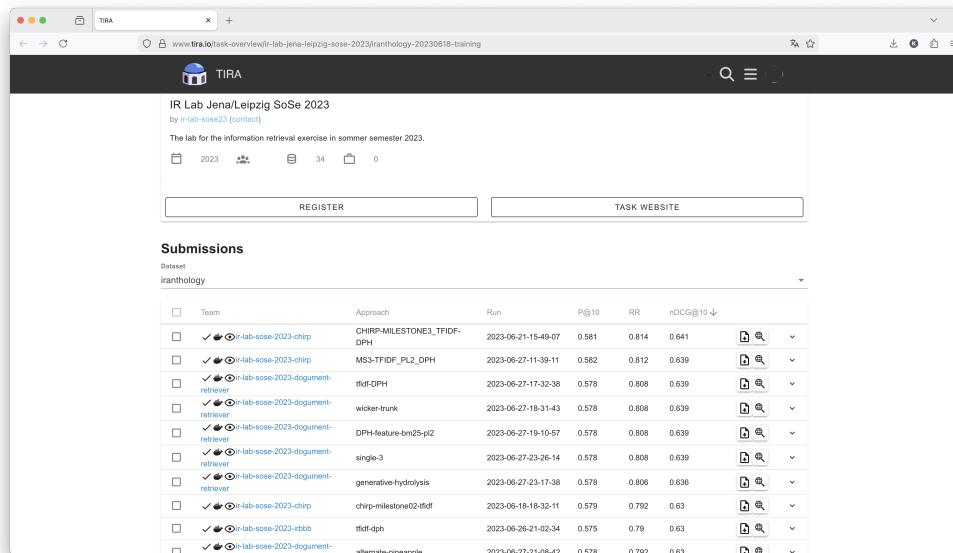
Suppose you have nDCG scores s_A, s_B for different topics t_A, t_B from two retrieval systems A and B . You might hypothesize that the mean nDCG score of system A is higher than that of system B , i.e., $\overline{s_A} \geq \overline{s_B}$.

To test this, you could define the null hypothesis as: $H_0 : \overline{s_A} \leq \overline{s_B}$... and use a test statistic such as: $t = \frac{\overline{s_A} - \overline{s_B}}{\frac{\sigma_A}{\sqrt{|t_A|}}}$ (Student's t-test [\[Formula\]](#))

Assignment

1. Develop a research question
 - Grounded in exploratory analysis and literature review
 - Not too complex
 - Focus on effectiveness rather than efficiency
2. Formulate ≥ 1 hypotheses for your research question
3. Test your hypotheses
 - Apply appropriate statistical tests to evaluate and potentially reject each null hypothesis
 - Use the previously annotated topics for evaluation (via [TIRA](#))
 - You may use the final effectiveness scores of the 10 baseline systems and all submitted approaches (i.e., the full leaderboard)
 - Test results will be provided only *after* you have formulated your hypotheses
4. Briefly interpret your results and answer your research question in a written report

Next Steps


- ❑ Exercise sheet on temir.org
- ❑ Assignment
 - Due Date: Monday, 19.01.2025, 23:59
 - Deliverable:
 - [TIRA](#) submission(s)
 - Short report (1.5–2 pages) written in [LaTeX](#)
 - Include the sections: Introduction, Related Work, Method, Results, Conclusion, References (optionally Appendix)
 - For formatting examples (tables, figures, etc.), see [past Webis publications](#) [[example](#)]
 - Use the WOVS 2025 paper template [[WOVS 2025](#)]
 - Submit the report via email, CC your team member, and include both a PDF version and the [LaTeX](#) source files as a separate zipped archive

Inspiration

❑ System effectiveness from last semesters

- Which systems performed well?
- Which topics were difficult?
- Where were “good” retrieval systems fooled?

[summer '23][winter '23/'24][summer '24]

The screenshot shows a web browser window for the TIREx platform. The URL is www.tre.io/task-overview/ir-lab-jena-leipzig-sose-2023/anthrology-20230618-training. The page title is "TIREx" and the sub-page title is "IR Lab Jena/Leipzig SoSe 2023". Below the title, it says "by ir-lab-sose23 [Contact]". The page displays a "Submissions" table for the "Dataset: anthrology". The table has columns: Team, Approach, Run, P@10, RR, and nDCG@10. The table lists 15 different teams and their approaches, along with their performance metrics. Each row in the table includes a "..." button for viewing the code.

Team	Approach	Run	P@10	RR	nDCG@10	...
✓ ir-lab-sose-2023-chip	CHIRP-MILESTONE3_TFIDF-DPH	2023-06-21-15-49-07	0.581	0.814	0.641	
✓ ir-lab-sose-2023-chip	MS3-TFIDF_PL2_DPH	2023-06-27-17-32-11	0.582	0.812	0.639	
✓ ir-lab-sose-2023-document-retriever	tfidf-DPH	2023-06-27-17-32-38	0.578	0.808	0.639	
✓ ir-lab-sose-2023-document-retriever	wicker-trunk	2023-06-27-18-31-43	0.578	0.808	0.639	
✓ ir-lab-sose-2023-document-retriever	DPH-feature-bm25-pf2	2023-06-27-19-10-57	0.578	0.808	0.639	
✓ ir-lab-sose-2023-document-retriever	single-3	2023-06-27-23-26-14	0.578	0.808	0.639	
✓ ir-lab-sose-2023-document-retriever	generative-hydrolysis	2023-06-27-23-17-38	0.578	0.806	0.636	
✓ ir-lab-sose-2023-chip	chirp-milestone02-tfidf	2023-06-18-18-32-11	0.579	0.792	0.63	
✓ ir-lab-sose-2023-ribb	tfidf-dph	2023-06-26-21-02-34	0.575	0.79	0.63	
✓ ir-lab-sose-2023-document-retriever	alternate-pineapple	2023-06-27-21-08-42	0.578	0.792	0.63	

Leaderboard of past approaches.

If a { . . . } button is present, the code for that approach is available.

❑ TIREx components overview [[link](#)]

Appendix: WOVS

- ❑ International Workshop on Open Web Search (WOVS)
- ❑ Held at **ECIR 2026**, 30.03-01.04.2026, Delft, Netherlands
- ❑ More info: [[WOVS 2025 website](#)]
- ❑ Optional participation: Submit your work (call for papers opens soon)

Appendix: Variables

Scale (Operation)	Categories (no order or direction)	Natural Order	Equal Intervals	True Zero	Example
Nominal (=)	拇指	拇指	拇指	拇指	Marital status, sex, gender
Ordinal (median)	拇指	拇指	拇指	拇指	Student grade
Interval $(a + b, a - b, \frac{a+b}{2})$	拇指	拇指	拇指	拇指	Temperature in °C or °F, year
Ratio $(a \cdot b, \frac{a}{b}, \sqrt{a \cdot b})$	拇指	拇指	拇指	拇指	Temperature in K, age, height, weight