
Transformer Models
Motivation

NLP tasks require good text embeddings, which can be learned using neural
networks. Before transformers, recurrent neural networks were primarily used.

RNNs suffer from two problems:

❑ Sequence length / long-range dependencies

– NLP tasks typically require long-distance dependencies between terms
– Problem: vanishing gradient over long distances in RNNs
– Solution: reduce the lengths of paths that signals must traverse

❑ Training efficiency

– Parallelized computation within sequences enables large-scale training
– Problem: recurrent models cannot be parallelized at sequence level

(state at timestep t + 1 depends on state at t), only on batch level
– Solution: independent computation of each timesteps state

Transformers are efficient (in-sample parallelization) while also handling long-range
dependencies (constant path length), enabled by the Attention mechanism.
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Transformer Models
Contextual Embeddings

❑ Goal: allow each embedding to consider the other tokens in the sequence

– this allows to build contextualized embeddings, i.e., token embeddings
that include information about the context around the token

– starting point is an embedding layer, a simple lookup table that pairs each
input token ID with a learned continuous vector (input embedding)

❑ Idea: represent each token as weighted sum of all tokens in the sequence

r̂i =
t∑

j=1

wi,j · rj

❑ This requires four building blocks:

1. a way to decompose strings into tokens ➜ Tokenization
2. an initial representation of each token ➜ Input Embeddings
3. a way of representing the order of tokens ➜ Positional Encoding
4. a way of computing r̂i for each token ➜ Attention
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Transformer Models
Contextual Embeddings

Neurons that fire together wire together
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Note: weights w are not learned directly, but inferred by the attention mechanism from learned projections Q,K,V of the combined embeddings.
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Transformer Models
Tokenization & Input Embeddings

❑ The tokenizer splits the input string into a sequence of integers which
represent each tokens’ index in the vocabulary of the tokenizer

❑ Input embeddings are formed by projecting the (sparse) one-hot encoded
token IDs into a (dense) vector space capturing semantic information

❑ This projection is learned jointly with the rest of the model
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Transformer Models
Positional Encoding

❑ Word order (token position in the sequence) is crucial for language tasks

– Transformer models lack recurrency, all tokens in the are fed to the
network in parallel ➜ position information is lost

– We need to add some information indicating the word order (position of
the word) to the input embeddings ➜ positional encoding

❑ Naive approach: use token indices as positional encodings

– represent the position of each element in the sequence by its index
– indices are not bounded and can grow large in magnitude
– normalized (0-1) indices are incompatible with variable length sequences

as these would be normalized differently

❑ Better approach: represent position by a vector where each dimension
corresponds to a different sine function evaluated at the current index

– compatible with long sequences (bounded in magnitude)
– compatible with variable length sequences (normalized)
– compatible with arbitrary input embedding dimensionalities
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Remarks

Sinusoidal positional encodings represent position by a vector where each dimension corresponds to
the output of a function evaluating the current positions’ index. Even dimensions are mapped with a
sine function, odd positions are mapped with a cosine function, all of differing frequencies.

P (k, 2i) = sin

(
k

n2i/d

)
P (k, 2i+ 1) = cos

(
k

n2i/d

)
Parameters:

❑ k ➜ Index in the input sequence
❑ d ➜ Dimensioniality of positional encoding
❑ n ➜ Scalar normalization constant (usually 10, 000)
❑ i ➜ Used for mapping to column indices, i ∈ [0 . . . d/2]
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Transformer Models
Scaled Dot Product

To determine wi,j for two token representations ri and rj, we:

❑ compute a query vector qi = Wqri as linear transformation of ri
❑ compute a key vector kj = Wkrj as linear transformation of rj
❑ compute the dot product wi,j = qT

i kj that indicates token similarity

This is repeated for every token as key and as query, yielding the weight matrix w.
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❑ query vectors are stacked
into a query matrix Q

❑ key vectors are stacked into
a key matrix K

❑ w can be written as dot
product of Q and K
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Transformer Models
Attention Mechanism

❑ The weight matrix w needs to be normalized

– rescale the values by d (dimensionality of the query and key vectors)
– normalize the values using softmax to be non-negative and add up to 1
– this yields the weights to calculate the updated token representations

❑ The attention mechanism combines the weights with the original embeddings

– compute values vi = Wvri, stacked into a value matrix V, containing
linear projections of the input embeddings

– updated representations r̂i are summation of V weighted by w

Attention(Q,K,V) = softmax

(
QKT

√
d

)
︸ ︷︷ ︸

w

V︸︷︷︸
WvRT

❑ Learnable parameters are the weight matrices Wq, Wk, and Wv which
encode the linear transformations of input embeddings R
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Remarks

What does it mean to apply a linear transformation to the input embeddings and why do we do it?

❑ Linear transformation ➜ scale/shift of the input space given by a transformation matrix W

❑ Consider two sentences ‘apple released their new phone’ and ‘an apple and an orange’
❑ Updated embeddings will move closer to their context words during the update step

– apple should move closer to phone (its input context is tech-related)
– apple should move closer to orange (its input context is fruit-related)
– both should move away from each other (increase their discriminative power)

❑ Optimum: the transformation matrix W that maximizes the information gained

phone

apple apple

orange

W⇒
phone

apple apple

orange

Since the optimal transformation is different for Q,K,V, each learns their own matrix W.
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Transformer Models
Multi-Head Attention

❑ Multiple attention mechanisms 1...l each with different learned parameters
Wl

q, Wl
k,W

l
v called heads can be combined

❑ each head produces a different output; these are concatenated and passed
through a projection to reduce their dimension back to the original

❑ as each attention head can learn different weightings of representations, they
can encode different relationships between tokens in a sequence

W3
q Q3

W3
k K3

W3
v V3

⊗⊗

W2
q Q2

W2
k K2

W2
v V2

⊗⊗

W1
q Q1

W1
k K1

W1
v V1

⊗⊗

r̂31 r̂32 r̂33 r̂34 r̂35

r̂21 r̂22 r̂23 r̂24 r̂25

r̂11 r̂12 r̂13 r̂14 r̂15

r̂1 r̂2 r̂3 r̂4 r̂5

Projection

r5

r4

r3

r2

r1

IR:I-31 Neural Information Retrieval © GIENAPP/SCELLS 2023



Transformer Models
Masked Attention

❑ Masking is used to prevent attention to certain tokens
❑ A binary mask is applied to the weight matrix

– masking has to commence before normalization to not influence scores
– masked scores are set to −∞, thus resulting in a 0 after the softmax

❑ For example, the mask below can be used to have every token attend only to
tokens before it (causal language modeling)
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Transformer Models
Transformer Architecture

❑ Multiple attention blocks can be stacked to form a Transformer model
❑ A fully connected feed-forward layer is applied to each embedding separately

and identically after each attention block

– this allows the Transformer to learn complex relationships (non-linear)
– repeated attention without would compute only weighted averages (linear)

❑ Residual connections (‘+’) are added to add a portion of the input back to the
output of each layer (yields stabler gradients due to shorter signal path)
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Transformer Models
Encoder-Decoder Models

❑ The stack from the previous slide is commonly called an Encoder
➜ produces contextualized embeddings for an input sequence

❑ It can be coupled with a Decoder which adds cross-attention
➜ applies encoder embeddings as query and keys to own values
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– decoder output is fed through linear layer
predicting probabilities over the vocabulary

– decoder receives causal mask and shifted in-
put, restricting attention to previous tokens
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