
Transformer Models
Motivation

NLP tasks require good text embeddings, which can be learned using neural
networks. Before transformers, recurrent neural networks were primarily used.

RNNs suffer from two problems:

❑ Sequence length / long-range dependencies

– NLP tasks typically require long-distance dependencies between terms
– Problem: vanishing gradient over long distances in RNNs
– Solution: reduce the lengths of paths that signals must traverse

❑ Training efficiency

– Parallelized computation within sequences enables large-scale training
– Problem: recurrent models cannot be parallelized at sequence level

(state at timestep t + 1 depends on state at t), only on batch level
– Solution: independent computation of each timesteps state

Transformers are efficient (in-sample parallelization) while also handling long-range
dependencies (constant path length), enabled by the Attention mechanism.
IR:I-22 Neural Information Retrieval © GIENAPP/SCELLS 2023



Transformer Models
Contextual Embeddings

❑ Goal: allow each embedding to consider the other tokens in the sequence

– this allows to build contextualized embeddings, i.e., token embeddings
that include information about the context around the token

– starting point is an embedding layer, a simple lookup table that pairs each
input token ID with a learned continuous vector (input embedding)

❑ Idea: represent each token as weighted sum of all tokens in the sequence

r̂i =
t∑

j=1

wi,j · rj

❑ This requires four building blocks:

1. a way to decompose strings into tokens ➜ Tokenization
2. an initial representation of each token ➜ Input Embeddings
3. a way of representing the order of tokens ➜ Positional Encoding
4. a way of computing r̂i for each token ➜ Attention

IR:I-23 Neural Information Retrieval © GIENAPP/SCELLS 2023



Transformer Models
Contextual Embeddings

Neurons that fire together wire together

3 12 223 9 513 9

r1

+

=

r2
+

=

r3

+

=

r4

+

=

r5

+

=

r6

+

=

r̂2 r̂3 r̂4 r̂5 r̂6r̂1

w1,1 w1,2 w1,3 w1,4 w1,5 w1,6

Input
Sequence

Token IDs

Input
Embeddings

Positional
Encoding

Combined
Embeddings

Scaled
Dot Product

Contextual
Embeddings

To
ke

ni
za

tio
n

A
tt

en
tio

n

Note: weights w are not learned directly, but inferred by the attention mechanism from learned projections Q,K,V of the combined embeddings.

IR:I-24 Neural Information Retrieval © GIENAPP/SCELLS 2023



Transformer Models
Tokenization & Input Embeddings

❑ The tokenizer splits the input string into a sequence of integers which
represent each tokens’ index in the vocabulary of the tokenizer

❑ Input embeddings are formed by projecting the (sparse) one-hot encoded
token IDs into a (dense) vector space capturing semantic information

❑ This projection is learned jointly with the rest of the model

Neurons that fire...

3

Token ID One-Hot
Encoding

Dense
Embedding

IR:I-25 Neural Information Retrieval © GIENAPP/SCELLS 2023



Transformer Models
Positional Encoding

❑ Word order (token position in the sequence) is crucial for language tasks

– Transformer models lack recurrency, all tokens in the are fed to the
network in parallel ➜ position information is lost

– We need to add some information indicating the word order (position of
the word) to the input embeddings ➜ positional encoding

❑ Naive approach: use token indices as positional encodings

– represent the position of each element in the sequence by its index
– indices are not bounded and can grow large in magnitude
– normalized (0-1) indices are incompatible with variable length sequences

as these would be normalized differently

❑ Better approach: represent position by a vector where each dimension
corresponds to a different sine function evaluated at the current index

– compatible with long sequences (bounded in magnitude)
– compatible with variable length sequences (normalized)
– compatible with arbitrary input embedding dimensionalities

IR:I-26 Neural Information Retrieval © GIENAPP/SCELLS 2023



Remarks

Sinusoidal positional encodings represent position by a vector where each dimension corresponds to
the output of a function evaluating the current positions’ index. Even dimensions are mapped with a
sine function, odd positions are mapped with a cosine function, all of differing frequencies.

P (k, 2i) = sin

(
k

n2i/d

)
P (k, 2i+ 1) = cos

(
k

n2i/d

)
Parameters:

❑ k ➜ Index in the input sequence
❑ d ➜ Dimensioniality of positional encoding
❑ n ➜ Scalar normalization constant (usually 10, 000)
❑ i ➜ Used for mapping to column indices, i ∈ [0 . . . d/2]

IR:I-27 Neural Information Retrieval © GIENAPP/SCELLS 2023



Transformer Models
Scaled Dot Product

To determine wi,j for two token representations ri and rj, we:

❑ compute a query vector qi = Wqri as linear transformation of ri
❑ compute a key vector kj = Wkrj as linear transformation of rj
❑ compute the dot product wi,j = qT

i kj that indicates token similarity

This is repeated for every token as key and as query, yielding the weight matrix w.

qT
1 k1 qT

1 kj

qT
i k1 qT

i kj

. . .

. . .
...

...

. . . w = QKT

q1

qi

...

...

Wqr1

Q

k1 kj

. . .

. . .

Wkr1

K

❑ query vectors are stacked
into a query matrix Q

❑ key vectors are stacked into
a key matrix K

❑ w can be written as dot
product of Q and K

IR:I-28 Neural Information Retrieval © GIENAPP/SCELLS 2023



Transformer Models
Attention Mechanism

❑ The weight matrix w needs to be normalized

– rescale the values by d (dimensionality of the query and key vectors)
– normalize the values using softmax to be non-negative and add up to 1
– this yields the weights to calculate the updated token representations

❑ The attention mechanism combines the weights with the original embeddings

– compute values vi = Wvri, stacked into a value matrix V, containing
linear projections of the input embeddings

– updated representations r̂i are summation of V weighted by w

Attention(Q,K,V) = softmax

(
QKT

√
d

)
︸ ︷︷ ︸

w

V︸︷︷︸
WvRT

❑ Learnable parameters are the weight matrices Wq, Wk, and Wv which
encode the linear transformations of input embeddings R

IR:I-29 Neural Information Retrieval © GIENAPP/SCELLS 2023



Remarks

What does it mean to apply a linear transformation to the input embeddings and why do we do it?

❑ Linear transformation ➜ scale/shift of the input space given by a transformation matrix W

❑ Consider two sentences ‘apple released their new phone’ and ‘an apple and an orange’
❑ Updated embeddings will move closer to their context words during the update step

– apple should move closer to phone (its input context is tech-related)
– apple should move closer to orange (its input context is fruit-related)
– both should move away from each other (increase their discriminative power)

❑ Optimum: the transformation matrix W that maximizes the information gained

phone

apple apple

orange

W⇒
phone

apple apple

orange

Since the optimal transformation is different for Q,K,V, each learns their own matrix W.

IR:I-30 Neural Information Retrieval © GIENAPP/SCELLS 2023



Transformer Models
Multi-Head Attention

❑ Multiple attention mechanisms 1...l each with different learned parameters
Wl

q, Wl
k,W

l
v called heads can be combined

❑ each head produces a different output; these are concatenated and passed
through a projection to reduce their dimension back to the original

❑ as each attention head can learn different weightings of representations, they
can encode different relationships between tokens in a sequence

W3
q Q3

W3
k K3

W3
v V3

⊗⊗

W2
q Q2

W2
k K2

W2
v V2

⊗⊗

W1
q Q1

W1
k K1

W1
v V1

⊗⊗

r̂31 r̂32 r̂33 r̂34 r̂35

r̂21 r̂22 r̂23 r̂24 r̂25

r̂11 r̂12 r̂13 r̂14 r̂15

r̂1 r̂2 r̂3 r̂4 r̂5

Projection

r5

r4

r3

r2

r1

IR:I-31 Neural Information Retrieval © GIENAPP/SCELLS 2023



Transformer Models
Masked Attention

❑ Masking is used to prevent attention to certain tokens
❑ A binary mask is applied to the weight matrix

– masking has to commence before normalization to not influence scores
– masked scores are set to −∞, thus resulting in a 0 after the softmax

❑ For example, the mask below can be used to have every token attend only to
tokens before it (causal language modeling)

Attention Weights

⊙

Mask

⇒

r1

r̂1

r2

r̂2

r3

r̂3

r4

r̂4

r5

r̂5

IR:I-32 Neural Information Retrieval © GIENAPP/SCELLS 2023



Transformer Models
Transformer Architecture

❑ Multiple attention blocks can be stacked to form a Transformer model
❑ A fully connected feed-forward layer is applied to each embedding separately

and identically after each attention block

– this allows the Transformer to learn complex relationships (non-linear)
– repeated attention without would compute only weighted averages (linear)

❑ Residual connections (‘+’) are added to add a portion of the input back to the
output of each layer (yields stabler gradients due to shorter signal path)

Neurons

that

fire

together

wire

together

Input
Sequence

Input
Embeddings

M
ul

ti-
H

ea
d

A
tte

nt
io

n

Fe
ed

Fo
rw

ar
d

+ +

M
ul

ti-
H

ea
d

A
tte

nt
io

n

Fe
ed

Fo
rw

ar
d

+ +

M
ul

ti-
H

ea
d

A
tte

nt
io

n

Fe
ed

Fo
rw

ar
d

+ +

Contextual
Embeddings

IR:I-33 Neural Information Retrieval © GIENAPP/SCELLS 2023



Transformer Models
Encoder-Decoder Models

❑ The stack from the previous slide is commonly called an Encoder
➜ produces contextualized embeddings for an input sequence

❑ It can be coupled with a Decoder which adds cross-attention
➜ applies encoder embeddings as query and keys to own values

Multihead Attention

Q K V

Feed Forward

E
nc

od
er

Masked Multihead Attention

Q K V

Feed Forward

Multihead Attention

Feed Forward

V

D
ec

od
er

KQ

Linear + Softmax

Sequence Sequence (shifted right)

– decoder output is fed through linear layer
predicting probabilities over the vocabulary

– decoder receives causal mask and shifted in-
put, restricting attention to previous tokens

IR:I-34 Neural Information Retrieval © GIENAPP/SCELLS 2023


