Motivation

NLP tasks require good text embeddings, which can be learned using neural networks. Before transformers, recurrent neural networks were primarily used.

RNNs suffer from two problems:

- Sequence length / long-range dependencies
 - NLP tasks typically require long-distance dependencies between terms
 - Problem: vanishing gradient over long distances in RNNs
 - Solution: reduce the lengths of paths that signals must traverse

Training efficiency

- Parallelized computation within sequences enables large-scale training
- Problem: recurrent models cannot be parallelized at sequence level (state at timestep t + 1 depends on state at t), only on batch level
- Solution: independent computation of each timesteps state

Transformers are efficient (in-sample parallelization) while also handling long-range dependencies (constant path length), enabled by the Attention mechanism.

Contextual Embeddings

Goal: allow each embedding to consider the other tokens in the sequence

- this allows to build contextualized embeddings, i.e., token embeddings that include information about the context around the token
- starting point is an embedding layer, a simple lookup table that pairs each input token ID with a learned continuous vector (input embedding)
- □ Idea: represent each token as weighted sum of all tokens in the sequence

$$\hat{\mathbf{r}}_i = \sum_{j=1}^t w_{i,j} \cdot \mathbf{r}_j$$

 \rightarrow

÷

- This requires four building blocks:
 - 1. a way to decompose strings into tokens \rightarrow
 - 2. an initial representation of each token
 - 3. a way of representing the order of tokens \rightarrow
 - 4. a way of computing $\hat{\mathbf{r}}_i$ for each token

Tokenization Input Embeddings Positional Encoding Attention

Contextual Embeddings

Note: weights w are not learned directly, but inferred by the attention mechanism from learned projections Q, K, V of the combined embeddings.

Tokenization & Input Embeddings

- The tokenizer splits the input string into a sequence of integers which represent each tokens' index in the vocabulary of the tokenizer
- Input embeddings are formed by projecting the (sparse) one-hot encoded token IDs into a (dense) vector space capturing semantic information
- □ This projection is learned jointly with the rest of the model

Positional Encoding

- □ Word order (token position in the sequence) is crucial for language tasks
 - Transformer models lack recurrency, all tokens in the are fed to the network in parallel
 position information is lost
 - We need to add some information indicating the word order (position of the word) to the input embeddings → positional encoding

□ **Naive approach**: use token indices as positional encodings

- represent the position of each element in the sequence by its index
- indices are not bounded and can grow large in magnitude
- normalized (0-1) indices are incompatible with variable length sequences as these would be normalized differently
- Better approach: represent position by a vector where each dimension corresponds to a different sine function evaluated at the current index
 - compatible with long sequences (bounded in magnitude)
 - compatible with variable length sequences (normalized)
 - compatible with arbitrary input embedding dimensionalities

Remarks

Sinusoidal positional encodings represent position by a vector where each dimension corresponds to the output of a function evaluating the current positions' index. Even dimensions are mapped with a sine function, odd positions are mapped with a cosine function, all of differing frequencies.

$$P(k,2i) = \sin\left(\frac{k}{n^{2i/d}}\right)$$
$$P(k,2i+1) = \cos\left(\frac{k}{n^{2i/d}}\right)$$

Parameters:

- \Box k \rightarrow Index in the input sequence
- \Box d \Rightarrow Dimensioniality of positional encoding
- \Box *n* \rightarrow Scalar normalization constant (usually 10,000)
- □ *i* → Used for mapping to column indices, $i \in [0 \dots d/2]$

Scaled Dot Product

To determine $w_{i,j}$ for two token representations \mathbf{r}_i and \mathbf{r}_j , we:

- \Box compute a query vector $\mathbf{q}_i = \mathbf{W}_q \mathbf{r}_i$ as linear transformation of \mathbf{r}_i
- \Box compute a key vector $\mathbf{k}_j = \mathbf{W}_k \mathbf{r}_j$ as linear transformation of \mathbf{r}_j
- \Box compute the dot product $w_{i,j} = \mathbf{q}_i^T \mathbf{k}_j$ that indicates token similarity

This is repeated for every token as key and as query, yielding the weight matrix w.

Attention Mechanism

- \Box The weight matrix w needs to be normalized
 - rescale the values by *d* (dimensionality of the query and key vectors)
 - normalize the values using softmax to be non-negative and add up to 1
 - this yields the weights to calculate the updated token representations
- □ The attention mechanism combines the weights with the original embeddings
 - compute values $v_i = W_v r_i$, stacked into a value matrix V, containing linear projections of the input embeddings
 - updated representations $\hat{\mathbf{r}}_i$ are summation of \mathbf{V} weighted by w

□ Learnable parameters are the weight matrices W_q , W_k , and W_v which encode the linear transformations of input embeddings R

Remarks

What does it mean to apply a linear transformation to the input embeddings and why do we do it?

- $\hfill\square$ Linear transformation $\hfill \Rightarrow$ scale/shift of the input space given by a transformation matrix ${\bf W}$
- □ Consider two sentences 'apple released their new phone' and 'an apple and an orange'
- □ Updated embeddings will move closer to their context words during the update step
 - apple should move closer to phone (its input context is tech-related)
 - apple should move closer to orange (its input context is fruit-related)
 - both should move away from each other (increase their discriminative power)
- Optimum: the transformation matrix W that maximizes the information gained

Since the optimal transformation is different for $\mathbf{Q}, \mathbf{K}, \mathbf{V}$, each learns their own matrix \mathbf{W} .

Multi-Head Attention

- □ Multiple attention mechanisms 1...l each with different learned parameters \mathbf{W}_{q}^{l} , \mathbf{W}_{k}^{l} , \mathbf{W}_{v}^{l} called *heads* can be combined
- each head produces a different output; these are concatenated and passed through a projection to reduce their dimension back to the original
- as each attention head can learn different weightings of representations, they can encode different relationships between tokens in a sequence

Masked Attention

- Masking is used to prevent attention to certain tokens
- □ A binary mask is applied to the weight matrix
 - masking has to commence before normalization to not influence scores
 - masked scores are set to $-\infty$, thus resulting in a 0 after the softmax
- For example, the mask below can be used to have every token attend only to tokens before it (causal language modeling)

Transformer Architecture

- Multiple attention blocks can be stacked to form a Transformer model
- A fully connected feed-forward layer is applied to each embedding separately and identically after each attention block
 - this allows the Transformer to learn complex relationships (non-linear)
 - repeated attention without would compute only weighted averages (linear)
- Residual connections ('+') are added to add a portion of the input back to the output of each layer (yields stabler gradients due to shorter signal path)

Encoder-Decoder Models

- The stack from the previous slide is commonly called an Encoder
 - ➔ produces contextualized embeddings for an input sequence
- □ It can be coupled with a Decoder which adds cross-attention
 - → applies encoder embeddings as query and keys to own values

