Transformer Models
Motivation

NLP tasks require good text embeddings, which can be learned using neural
networks. Before transformers, recurrent neural networks were primarily used.

RNNs suffer from two problems:

o Sequence length / long-range dependencies

Problem
Solution

o Training efficiency

Problem

Solution

Transformers are efficient (in-sample parallelization) while also handling long-range
dependencies (constant path length), enabled by the Attention mechanism.



Transformer Models
Contextual Embeddings

o Goal: allow each embedding to consider the other tokens in the sequence

contextualized

o lIdea: represent each token as weighted sum of all tokens in the sequence
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o This requires four building blocks:

1.
2
3.
4. a way of computing r; for each token - Attention

a way to decompose strings into tokens = Tokenization
. an initial representation of each token - Input Embeddings
a way of representing the order of tokens =» Positional Encoding



Transformer Models
Contextual Embeddings
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Note: weights w are not learned directly, but inferred by the attention mechanism from learned projections Q, K, V of the combined embeddings.



Transformer Models
Tokenization & Input Embeddings

o The tokenizer splits the input string into a sequence of integers which
represent each tokens’ index in the vocabulary of the tokenizer

o Input embeddings are formed by projecting the (sparse) one-hot encoded
token IDs into a (dense) vector space capturing semantic information

o This projection is learned jointly with the rest of the model
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Transformer Models
Positional Encoding

o Word order (token position in the sequence) is crucial for language tasks
— Transformer models lack recurrency, all tokens in the are fed to the
network in parallel =» position information is lost
— We need to add some information indicating the word order (position of
the word) to the input embeddings =¥ positional encoding
o Naive approach: use token indices as positional encodings
— represent the position of each element in the sequence by its index
— indices are not bounded and can grow large in magnitude
— normalized (0-1) indices are incompatible with variable length sequences
as these would be normalized differently

0o Better approach: represent position by a vector where each dimension
corresponds to a different sine function evaluated at the current index
— compatible with long sequences (bounded in magnitude)
— compatible with variable length sequences (normalized)
— compatible with arbitrary input embedding dimensionalities
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Remarks

Sinusoidal positional encodings represent position by a vector where each dimension corresponds to
the output of a function evaluating the current positions’ index. Even dimensions are mapped with a
sine function, odd positions are mapped with a cosine function, all of differing frequencies.

: : k
P(k,2i) = sin (nm‘/d)

: k
P(k,2i+ 1) = cos (W)

Parameters:



Transformer Models
Scaled Dot Product

To determine w; ; for two token representations r; and r;, we:

o compute a vector q;, = W,r; as linear transformation of r;
o compute a vector k; = W, r; as linear transformation of r;
o compute the w; ; = q! k; that indicates token similarity

This is repeated for every token as key and as query, yielding the weight matrix w.
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Transformer Models
Attention Mechanism

o The weight matrix w needs to be normalized
— rescale the values by d (dimensionality of the query and key vectors)
— normalize the values using softmax to be non-negative and add up to 1
— this yields the weights to calculate the updated token representations
o The attention mechanism combines the weights with the original embeddings

— compute values v, = W, r;, stacked into a value matrix V, containing
linear projections of the input embeddings

— updated representations r; are summation of V weighted by w

. QK”
Attention(Q, K, V) = softmax \Y
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o Learnable parameters are the weight matrices W,, W;, and W, which
encode the linear transformations of input embeddings R
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Remarks

What does it mean to apply a linear transformation to the input embeddings and why do we do it?

O Linear transformation =» scale/shift of the input space given by a transformation matrix W
0 Consider two sentences ‘apple released their new phone’” and ‘an apple and an orange’
O Updated embeddings will move closer to their context words during the update step

— apple should move closer to phone (its input context is tech-related)

— apple should move closer to orange (its input context is fruit-related)

— both should move away from each other (increase their discriminative power)

O Optimum: the transformation matrix W that maximizes the information gained
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Since the optimal transformation is different for Q, K, V, each learns their own matrix W.
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Transformer Models
Multi-Head Attention

o Multiple attention mechanisms 1...I each with different learned parameters
W, W, ,W! called heads can be combined

o each head produces a different output; these are concatenated and passed
through a projection to reduce their dimension back to the original

0 as each attention head can learn different weightings of representations, they
can encode different relationships between tokens in a sequence
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Transformer Models
Masked Attention

o Masking is used to prevent attention to certain tokens
o A binary mask is applied to the weight matrix

— masking has to commence before normalization to not influence scores
— masked scores are set to —oo, thus resulting in a 0 after the softmax

o For example, the mask below can be used to have every token attend only to
tokens before it (causal language modeling)

@

Attention Weights Mask
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Transformer Models
Transformer Architecture
o Multiple attention blocks can be stacked to form a Transformer model
o A fully connected feed-forward layer is applied to each embedding separately
and identically after each attention block
— this allows the Transformer to learn complex relationships (non-linear)
— repeated attention without would compute only weighted averages (linear)

o Residual connections (‘+’) are added to add a portion of the input back to the
output of each layer (yields stabler gradients due to shorter signal path)
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Transformer Models
Encoder-Decoder Models

o The stack from the previous slide is commonly called an Encoder
=¥ produces contextualized embeddings for an input sequence

o It can be coupled with a Decoder which adds cross-attention
=» applies encoder embeddings as query and keys to own values

— decoder output is fed through linear layer
predicting probabilities over the vocabulary

— decoder receives causal mask and shifted in-
put, restricting attention to previous tokens
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