Bayesian Classification

Exercise 1 : Probability Basics (Conditional Independence)

There are eight boxes containing different colored balls as shown in the illustration below:

The balls can be green, blue, yellow, or red (also marked $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ in the figure). When picking one of the eight boxes at random, let A refer to the event "box contains a green ball," B to the event "box contains a blue ball," C to the event "box contains a yellow ball," and D to the event "box contains a red ball." Hence, $A \cap B$ is the event "box contains both a green and a blue ball," etc.
(a) Calculate $P(A), P(B), P(C)$, and $P(D)$.
(b) Calculate $P(A \cap B), P(A \cap C), P(B \cap C)$, and $P(B \cap D)$.
(c) Check all that apply:
\square The events A and B are statistically independent.
\square The events A and C are statistically independent.
\square The events B and C are statistically independent.
\square The events B and D are statistically independent.
(d) Calculate $P(A \mid C), P(B \mid C)$, and $P(A \cap B \mid C)$.
(e) Calculate $P(B \mid D), P(C \mid D)$, and $P(B \cap C \mid D)$
(f) Check all that apply:The events A and B are conditionally independent given C.The events B and C are conditionally independent given D.

Exercise 2 : Bayes’ Rule
A hospital database contains diagnoses $\left(C_{1} \ldots C_{5}\right)$ for 8 patients along with binary observations of symptoms $S_{1} \ldots S_{9}$:

$\overline{\text { Patient }}$	Diagnosis	Symptoms								
		S_{1}	S_{2}	S_{3}	S_{4}	S_{5}	S_{6}	S_{7}	S_{8}	S_{9}
1	C_{1}	1	0	1	0	1	0	0	0	0
2	C_{2}	0	1	0	1	1	0	1	0	0
3	C_{3}	1	0	1	0	0	1	0	1	0
4	C_{4}	0	1	0	1	1	0	1	0	0
5	C_{3}	1	0	1	0	0	0	0	1	0
6	C_{5}	0	0	0	0	1	0	0	0	1
7	C_{3}	1	0	1	0	0	1	0	0	0
8	C_{2}	0	1	0	0	0	0	1	0	0

(a) Compute based on the database the prior probabilities $P\left(C_{i}\right)$ for each diagnosis.
(b) Compute based on the database the posterior probabilities $P\left(C_{i} \mid S_{4}\right)$ for each diagnosis.

Exercise 3 : Naïve Bayes

Given is the following dataset to classify whether a dog is dangerous or well-behaved in character:

Color	Fur	Size	Character (C)
brown	ragged	small	well-behaved
black	ragged	big	dangerous
black	smooth	big	dangerous
black	curly	small	well-behaved
white	curly	small	well-behaved
white	smooth	small	dangerous
red	ragged	big	well-behaved

(a) Determine the parameters $P\left(A_{i}\right)$ and $P\left(B_{j=x_{j}} \mid A_{i}\right)$ for a Naïve Bayes classifier on this dataset.
(b) Classify the new example $\mathbf{x}=$ (black, ragged, small) using your Naïve Bayes classifier.

