
Foundations of Machine Learning Homework 5

Decision Trees

Exercise 1 : Decision Trees

Construct by hand decision trees corresponding to each of the following Boolean formulas. The examples
(x, c) ∈ D consist of a feature vector x where each component corresponds to one of the Boolean variables
(A,B, . . . ) used in the formula, and each example corresponds to one interpretation (i.e. assignment of 0/1
to the Boolean variables). The target concept c is the truth value of the formula given that interpretation.
Assume the set D contains examples with all possible combinations of attribute values.

Hint: It may be helpful to write out the set D for each formula as a truth table.

(a) A ∧ ¬B
Answer

A

Label: 0

0

B

Label: 1

0

Label: 0

1

1

(b) A XOR B

Answer

A

B

Label: 0

0

Label: 1

1

0

B

Label: 0

1

Label: 1

0

1

(c) A ∨ (B ∧ C)

Answer

A

B

Label: 0

0

C

Label: 0

0

Label: 1

1

1

0

Label: 1

1
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(d) (A ∧B) ∨ (C ∧D)

Answer

A

C

Label: 0

0

D

Label: 0

0

Label: 1

1

1

0

B

C

Label: 0

0

D

Label: 0

0

Label: 1

1

1

0

Label: 1

1

1

Exercise 2 : Impurity Functions

Let D be a set of examples over a feature space X and a set of classes C = {c1, c2, c3, c4}, with |D| = 24.
Consider the following illustration of two possible decision trees, T1 and T2 – the colors represent the
classes present in each subset D(ti) represented by node ti,j of Ti; the numbers denote how many
examples of each class are present.

t2,1 t2,2

c1

c2

c3

c4

T1 T26 6

6 6

66

66

6 6
6 6

6 64
42
2

23 4 3 6 6 4 1 6 1 14 6 1

t1,1 t1,2

(a) First, consider only the first split that each of the two trees makes: compute
∆ι(D, {D(t1,1), D(t1,2)}) and ∆ι(D, {D(t2,1), D(t2,2)}) with (1) the misclassification rate
ιmisclass and (2) the entropy criterion ιentropy as splitting criterion.

Interpret the results: which of {D(t1,1), D(t1,2)} or {D(t2,1), D(t2,2)} is the better first split?

Answer
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∆ιmisclass(D, {D(t1,1), D(t1,2)})
= ιmisclass(D)−

∑2
l=1

|D(t1,l)|
|D| · ιmisclass(D(t1,l))

= (1− max{ 6
24 ,

6
24 ,

6
24 ,

6
24})− 2 · 12

24 · (1− max{ 6
12 ,

6
12})

= (1− 0.25)− 2 · 0.5 · (1− 0.5)
= 0.75− 2 · 0.5 · 0.5
= 0.25

∆ιmisclass(D, {D(t2,1), D(t2,2)})
= ιmisclass(D)−

∑2
l=1

|D(t2,l)|
|D| · ιmisclass(D(t2,l))

= (1− max{ 6
24 ,

6
24 ,

6
24 ,

6
24})− 2 · 12

24 · (1− max{ 6
12 ,

4
12 ,

2
12})

= (1− 0.25)− 2 · 0.5 · (1− 0.5)
= 0.75− 2 · 0.5 · 0.5
= 0.25

∆ιentropy (D, {D(t1,1), D(t1,2)})
= ιentropy (D)−

∑2
l=1

|D(t1,l)|
|D| · ιentropy (D(t1,l))

= −4 ·
(

6
24 log 2

6
24

)
− 2 · 12

24 ·
(
−
(

6
12 · log 2

6
12

)
−
(

6
12 · log 2

6
12

))
= −4 · (−0.5)− 2 · 0.5 · (0.5 + 0.5)
= 1

∆ιentropy (D, {D(t2,1), D(t2,2)})
= ιentropy (D)−

∑2
l=1

|D(t2,l)|
|D| · ιentropy (D(t2,l))

= −4 ·
(

6
24 log 2

6
24

)
− 2 · 12

24 ·
(
−
(

6
12 · log 2

6
12

)
−
(

4
12 · log 2

4
12

)
−
(

2
12 · log 2

2
12

))
= −4 · (−0.5)− 2 · 0.5 · (0.5 + 0.528 + 0.431)
= 0.541

With the misclassification rate both splits are identically evaluated. The entropy criterion prefers
pure example sets. The split in T1 gets rated higher. Intuitively, the entropy criterion is right: after
the first split in T1, there is “less work to do” to purify all example sets.

(b) If we compare T1 and T2 in terms of their misclassification rate on D, which one is the better
decision tree?

Answer

According to the training set error T2, i.e., Err(T2, D) = 4
24 , is better than T1, i.e.

Err(T1, D) = 5
24 .

(c) Assuming the splits shown are the only possibilities, which of T1 or T2 would the ID3 algorithm
construct, and why?

Answer

ID3 uses information gain (i.e., entropy impurity reduction) as the split criterion. Hence, as the first
split, {D(t1,1), D(t1,2)} would be chosen, and the “less good” decision tree would result; this is
because ID3 searches the hypothesis space by greedy local optimization. There is no guarantee to
find a globally optimal hypothesis.

Exercise 3 : Decision Trees

Given is the following dataset to classifiy whether a dog is dangerous or well-behaved in character:
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Color Fur Size Character (C)
brown ragged small well-behaved
black ragged big dangerous
black smooth big dangerous
black curly small well-behaved
white curly small well-behaved
white smooth small dangerous
red ragged big well-behaved

(a) Use the ID3 algorithm with ιentropy as the impurity function to determine the tree T .

Answer

• Determine ιentropy (D):

ιentropy (D) = −
k∑

i=1

P (Ai) · log 2P (Ai)

= −
[
4

7
· log 2

4

7
+

3

7
· log 2

3

7

]
≈ 0.985

• Determine ∆ιentropy = 0.985−
∑m

l=1
|Dl|
|D| · ιentropy (Dl) for each attribute and choose the

attribute with maximum delta (i.e., information gain) to split:

– Attribute Color:
Color well-behaved dangerous Probability
brown 1 0 P (brown) = 1/7
black 1 2 P (black) = 3/7
white 1 1 P (white) = 2/7
red 1 0 P (red) = 1/7

∆ιentropy = 0.985−
[
1

7

(
−
(
1

1
log 2

1

1
+

0

1
log 2

0

1

))
+

3

7

(
−
(
1

3
log 2

1

3
+

2

3
log 2

2

3

))
+
2

7

(
−
(
1

2
log 2

1

2
+

1

2
log 2

1

2

))
+

1

7

(
−
(
1

1
log 2

1

1
+

0

1
log 2

0

1

))]
= 0.985−

[
0 +

3

7

(
−
(
1

3
log 2

1

3
+

2

3
log 2

2

3

))
+

2

7

(
−
(
1

2
log 2

1

2
+

1

2
log 2

1

2

))
+ 0

]
≈ 0.306

– Attribute Fur:

Fur well-behaved dangerous Probability
ragged 2 1 P (ragged) = 3/7
smooth 0 2 P (smooth) = 2/7
curly 2 0 P (curly) = 2/7
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∆ιentropy = 0.985−
[
3

7

(
−
(
2

3
log 2

2

3
+

1

3
log 2

1

3

))
+

2

7

(
−
(
0

2
log 2

0

2
+

2

2
log 2

2

2

))
+
2

7

(
−
(
2

2
log 2

2

2
+

0

2
log 2

0

2

))]
= 0.985−

[
3

7

(
−
(
2

3
log 2

2

3
+

1

3
log 2

1

3

))
+ 0 + 0

]
≈ 0.591

– Attribute Size:

Size well-behaved dangerous Probability
small 3 1 P (small) = 4/7
big 1 2 P (big) = 3/7

∆ιentropy = 0.985−
[
4

7

(
−
(
3

4
log 2

3

4
+

1

4
log 2

1

4

))
+

3

7

(
−
(
1

3
log 2

1

3
+

2

3
log 2

2

3

))]
≈ 0.128

∆ιentropy is maximal for attribute Fur. Generated tree with reduced dataset is pictured below.

Fur

Color Size Character (C)
brown small well-behaved
black big dangerous
red big well-behaved

ragged

Label: dangerous

smooth

Label: well-behaved

curly

• ID3 is applied recursively to remaining non-terminal nodes. Determine ιentropy (D) for the
reduced dataset:

ιentropy (D) = −
k∑

i=1

P (Ai) · log 2P (Ai)

= −
[
1

3
· log 2

1

3
+

2

3
· log 2

2

3

]
≈ 0.918

• Determine ∆ιentropy = 0.918−
∑m

l=1
|Dl|
|D| · ιentropy (Dl) for each remaining attribute and

choose the attribute with maximum delta (i.e., information gain) to split:
– Attribute Color:

Color well-behaved dangerous Probability
brown 1 0 P (brown) = 1/3
black 0 1 P (black) = 1/3
red 1 0 P (red) = 1/3

∆ιentropy (D) = 0.918−
[
1

3

(
−
(
1

1
log 2

1

1
+

0

1
log 2

0

1

))
+

1

3

(
−
(
0

1
log 2

0

1
+

1

1
log 2

1

1

))
+
1

3

(
−
(
1

1
log 2

1

1
+

0

1
log 2

0

1

))]
= 0.918
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– Attribute Size:

Size well-behaved dangerous Probability
small 1 0 P (small) = 1/3
big 1 1 P (big) = 2/3

∆ιentropy (D) = 0.918−
[
1

3

(
−
(
1

1
log 2

1

1
+

0

1
log 2

0

1

))
+

2

3

(
−
(
1

2
log 2

1

2
+

1

2
log 2

1

2

))]
= 0.918−

[
0 +

2

3

(
−
(
1

2
log 2

1

2
+

1

2
log 2

1

2

))]
≈ 0.252

∆ιentropy is maximal for attribute Color. As white does not occur in the reduced dataset, the
most common class of the reduced dataset is chosen as label. Generated tree is pictured below.

Fur

Color

Label: well-behaved

brown

Label: well-behaved

red

Label: dangerous

black

Label: well-behaved

white

ragged

Label: dangerous

smooth

Label: well-behaved

curly

(b) Classify the new example (Color=black, Fur=ragged, Size=small) using T .

Answer

1. Check attribute fur.

2. Fur=ragged → Check attribute color.

3. color=black → Assign class=dangerous
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