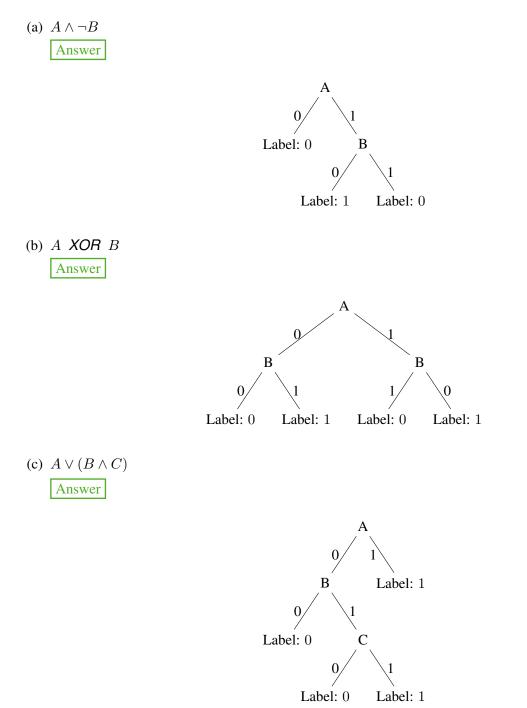
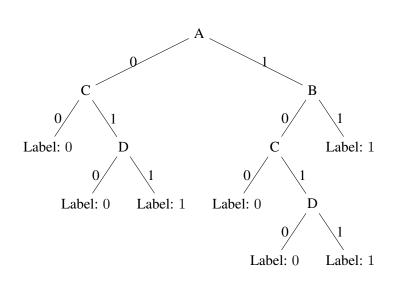
Exercise 1 : Decision Trees

Construct by hand decision trees corresponding to each of the following Boolean formulas. The examples $(\mathbf{x}, c) \in D$ consist of a feature vector \mathbf{x} where each component corresponds to one of the Boolean variables (A, B, ...) used in the formula, and each example corresponds to one interpretation (i.e. assignment of 0/1 to the Boolean variables). The target concept c is the truth value of the formula given that interpretation. Assume the set D contains examples with all possible combinations of attribute values.

Hint: It may be helpful to write out the set D for each formula as a truth table.

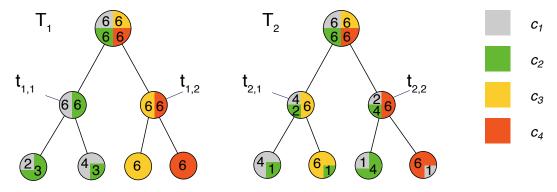


(d) $(A \land B) \lor (C \land D)$



Exercise 2 : Impurity Functions

Let D be a set of examples over a feature space X and a set of classes $C = \{c_1, c_2, c_3, c_4\}$, with |D| = 24. Consider the following illustration of two possible decision trees, T_1 and T_2 – the colors represent the classes present in each subset $D(t_i)$ represented by node $t_{i,j}$ of T_i ; the numbers denote how many examples of each class are present.



(a) First, consider only the first split that each of the two trees makes: compute Δι(D, {D(t_{1,1}), D(t_{1,2})}) and Δι(D, {D(t_{2,1}), D(t_{2,2})}) with (1) the misclassification rate ιmisclass and (2) the entropy criterion ιentropy as splitting criterion.
Interpret the results: which of {D(t_{1,1}), D(t_{1,2})} or {D(t_{2,1}), D(t_{2,2})} is the better first split?

Answer

$$\begin{split} \Delta \iota_{\text{misclass}}(D, \{D(t_{1,1}), D(t_{1,2})\}) \\ &= \iota_{\text{misclass}}(D) - \sum_{l=1}^{2} \frac{|D(t_{1,l})|}{|D|} \cdot \iota_{\text{misclass}}(D(t_{1,l})) \\ &= (1 - \max\{\frac{6}{24}, \frac{6}{24}, \frac{6}{24}, \frac{6}{24}\}) - 2 \cdot \frac{12}{24} \cdot (1 - \max\{\frac{6}{12}, \frac{6}{12}\}) \\ &= (1 - 0.25) - 2 \cdot 0.5 \cdot (1 - 0.5) \\ &= 0.75 - 2 \cdot 0.5 \cdot 0.5 \\ &= 0.25 \\ \Delta \iota_{\text{misclass}}(D, \{D(t_{2,1}), D(t_{2,2})\}) \\ &= \iota_{\text{misclass}}(D) - \sum_{l=1}^{2} \frac{|D(t_{2,l})|}{|D|} \cdot \iota_{\text{misclass}}(D(t_{2,l})) \\ &= (1 - \max\{\frac{6}{24}, \frac{6}{24}, \frac{6}{24}, \frac{6}{24}\}) - 2 \cdot \frac{12}{24} \cdot (1 - \max\{\frac{6}{12}, \frac{4}{12}, \frac{2}{12}\}) \\ &= (1 - 0.25) - 2 \cdot 0.5 \cdot (1 - 0.5) \\ &= 0.75 - 2 \cdot 0.5 \cdot 0.5 \\ &= 0.25 \\ \Delta \iota_{\text{entropy}}(D, \{D(t_{1,1}), D(t_{1,2})\}) \\ &= \iota_{\text{entropy}}(D) - \sum_{l=1}^{2} \frac{|D(t_{1,l})|}{|D|} \cdot \iota_{\text{entropy}}(D(t_{1,l})) \\ &= -4 \cdot (\frac{6}{24} \log_2 \frac{6}{24}) - 2 \cdot \frac{12}{24} \cdot (-(\frac{6}{12} \cdot \log_2 \frac{6}{12}) - (\frac{6}{12} \cdot \log_2 \frac{6}{12})) \\ &= -4 \cdot (-0.5) - 2 \cdot 0.5 \cdot (0.5 + 0.5) \\ &= 1 \\ \Delta \iota_{\text{entropy}}(D, \{D(t_{2,1}), D(t_{2,2})\}) \\ &= \iota_{\text{entropy}}(D) - \sum_{l=1}^{2} \frac{|D(t_{2,l})|}{|D|} \cdot \iota_{\text{entropy}}(D(t_{2,l})) \\ &= -4 \cdot (\frac{6}{24} \log_2 \frac{6}{24}) - 2 \cdot \frac{12}{24} \cdot (-(\frac{6}{12} \cdot \log_2 \frac{6}{12}) - (\frac{4}{12} \cdot \log_2 \frac{4}{12}) - (\frac{2}{12} \cdot \log_2 \frac{2}{12})) \\ &= -4 \cdot (-0.5) - 2 \cdot 0.5 \cdot (0.5 + 0.528 + 0.431) \\ &= 0.541 \end{aligned}$$

With the misclassification rate both splits are identically evaluated. The entropy criterion prefers pure example sets. The split in T_1 gets rated higher. Intuitively, the entropy criterion is right: after the first split in T_1 , there is "less work to do" to purify all example sets.

(b) If we compare T_1 and T_2 in terms of their misclassification rate on D, which one is the better decision tree?

Answer

According to the training set error T_2 , i.e., $Err(T_2, D) = \frac{4}{24}$, is better than T_1 , i.e. $Err(T_1, D) = \frac{5}{24}$.

(c) Assuming the splits shown are the only possibilities, which of T_1 or T_2 would the ID3 algorithm construct, and why?

Answer

ID3 uses information gain (i.e., entropy impurity reduction) as the split criterion. Hence, as the first split, $\{D(t_{1,1}), D(t_{1,2})\}$ would be chosen, and the "less good" decision tree would result; this is because ID3 searches the hypothesis space by greedy local optimization. There is no guarantee to find a globally optimal hypothesis.

Exercise 3 : Decision Trees

Given is the following dataset to classify whether a dog is dangerous or well-behaved in character:

Color	Fur	Size	Character (C)
brown	ragged	small	well-behaved
black	ragged	big	dangerous
black	smooth	big	dangerous
black	curly	small	well-behaved
white	curly	small	well-behaved
white	smooth	small	dangerous
red	ragged	big	well-behaved

- (a) Use the ID3 algorithm with $\iota_{entropy}$ as the impurity function to determine the tree T. Answer
 - Determine $\iota_{entropy}(D)$:

$$\iota_{entropy}(D) = -\sum_{i=1}^{k} P(A_i) \cdot \log_2 P(A_i)$$
$$= -\left[\frac{4}{7} \cdot \log_2 \frac{4}{7} + \frac{3}{7} \cdot \log_2 \frac{3}{7}\right]$$
$$\approx 0.985$$

- Determine $\Delta \iota_{entropy} = 0.985 \sum_{l=1}^{m} \frac{|D_l|}{|D|} \cdot \iota_{entropy}(D_l)$ for each attribute and choose the attribute with maximum delta (i.e., information gain) to split:
 - Attribute *Color*:

Color	well-behaved	dangerous	Probability
brown	1	0	P(brown) = 1/7
black	1	2	P(black) = 3/7
white	1	1	P(white) = 2/7
red	1	0	P(red) = 1/7

$$\begin{split} \Delta \iota_{entropy} &= 0.985 - \left[\frac{1}{7} \left(-\left(\frac{1}{1} \log_2 \frac{1}{1} + \frac{0}{1} \log_2 \frac{0}{1} \right) \right) + \frac{3}{7} \left(-\left(\frac{1}{3} \log_2 \frac{1}{3} + \frac{2}{3} \log_2 \frac{2}{3} \right) \right) \\ &+ \frac{2}{7} \left(-\left(\frac{1}{2} \log_2 \frac{1}{2} + \frac{1}{2} \log_2 \frac{1}{2} \right) \right) + \frac{1}{7} \left(-\left(\frac{1}{1} \log_2 \frac{1}{1} + \frac{0}{1} \log_2 \frac{0}{1} \right) \right) \right] \\ &= 0.985 - \left[0 + \frac{3}{7} \left(-\left(\frac{1}{3} \log_2 \frac{1}{3} + \frac{2}{3} \log_2 \frac{2}{3} \right) \right) + \frac{2}{7} \left(-\left(\frac{1}{2} \log_2 \frac{1}{2} + \frac{1}{2} \log_2 \frac{1}{2} \right) \right) + 0 \right] \\ &\approx 0.306 \end{split}$$

- Attribute Fur:

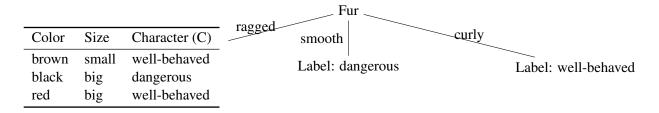
Fur	well-behaved	dangerous	Probability
ragged	2	1	P(ragged) = 3/7
smooth	0	2	P(smooth) = 2/7
curly	2	0	$P(\operatorname{curly}) = 2/7$

$$\begin{aligned} \Delta \iota_{entropy} &= 0.985 - \left[\frac{3}{7} \left(-\left(\frac{2}{3}\log_2 \frac{2}{3} + \frac{1}{3}\log_2 \frac{1}{3}\right) \right) + \frac{2}{7} \left(-\left(\frac{0}{2}\log_2 \frac{0}{2} + \frac{2}{2}\log_2 \frac{2}{2}\right) \right) \right. \\ &+ \frac{2}{7} \left(-\left(\frac{2}{2}\log_2 \frac{2}{2} + \frac{0}{2}\log_2 \frac{0}{2}\right) \right) \right] \\ &= 0.985 - \left[\frac{3}{7} \left(-\left(\frac{2}{3}\log_2 \frac{2}{3} + \frac{1}{3}\log_2 \frac{1}{3}\right) \right) + 0 + 0 \right] \\ &\approx 0.591 \end{aligned}$$

- Attribute Size:

$$\begin{aligned} \overline{\begin{array}{ccccc} \underline{\text{Size} & \text{well-behaved} & \text{dangerous} & \text{Probability} \\ \hline \underline{\text{small} & 3 & 1 & P(\textit{small}) = 4/7 \\ \hline \underline{\text{big}} & 1 & 2 & P(\textit{big}) = 3/7 \\ \end{aligned}} \\ \Delta \iota_{\textit{entropy}} &= & 0.985 - \left[\frac{4}{7} \left(-\left(\frac{3}{4} \log_2 \frac{3}{4} + \frac{1}{4} \log_2 \frac{1}{4} \right) \right) + \frac{3}{7} \left(-\left(\frac{1}{3} \log_2 \frac{1}{3} + \frac{2}{3} \log_2 \frac{2}{3} \right) \right) \right] \\ &\approx & 0.128 \end{aligned}$$

 $\Delta \iota_{entropy}$ is maximal for attribute Fur. Generated tree with reduced dataset is pictured below.



• ID3 is applied recursively to remaining non-terminal nodes. Determine $\iota_{entropy}(D)$ for the reduced dataset:

$$\iota_{entropy}(D) = -\sum_{i=1}^{k} P(A_i) \cdot \log_2 P(A_i)$$
$$= -\left[\frac{1}{3} \cdot \log_2 \frac{1}{3} + \frac{2}{3} \cdot \log_2 \frac{2}{3}\right]$$
$$\approx 0.918$$

- Determine $\Delta \iota_{entropy} = 0.918 \sum_{l=1}^{m} \frac{|D_l|}{|D|} \cdot \iota_{entropy}(D_l)$ for each remaining attribute and choose the attribute with maximum delta (i.e., information gain) to split:
 - Attribute Color:

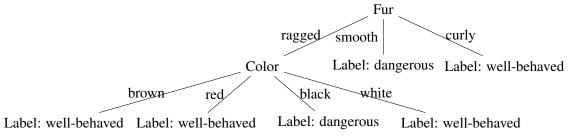
	Color	well-behaved	dangerous	Probability
	brown	1	0	P(brown) = 1/3
	black	0	1	P(black) = 1/3
	red	1	0	$P(\mathit{red}) = 1/3$
$\Delta \iota_{entropy}(D)$		$\left(-\left(\frac{1}{1}\log_2\frac{1}{1}+\right)\right)$		$\frac{1}{g_2 \left(\frac{0}{1}\right)} + \frac{1}{3} \left(-\left(\frac{0}{1} \log_2 \frac{0}{1} + \frac{1}{1} \log_2 \frac{1}{1}\right)\right)$

- Attribute Size:

Size	well-behaved	dangerous	Probability
small	1	0	P(small) = 1/3
big	1	1	P(big) = 2/3

$$\begin{aligned} \Delta \iota_{entropy}(D) &= 0.918 - \left[\frac{1}{3} \left(-\left(\frac{1}{1} \log_2 \frac{1}{1} + \frac{0}{1} \log_2 \frac{0}{1} \right) \right) + \frac{2}{3} \left(-\left(\frac{1}{2} \log_2 \frac{1}{2} + \frac{1}{2} \log_2 \frac{1}{2} \right) \right) \right] \\ &= 0.918 - \left[0 + \frac{2}{3} \left(-\left(\frac{1}{2} \log_2 \frac{1}{2} + \frac{1}{2} \log_2 \frac{1}{2} \right) \right) \right] \\ &\approx 0.252 \end{aligned}$$

 $\Delta \iota_{entropy}$ is maximal for attribute *Color*. As *white* does not occur in the reduced dataset, the most common class of the reduced dataset is chosen as label. Generated tree is pictured below.



- (b) Classify the new example (Color=black, Fur=ragged, Size=small) using T.
 - 1. Check attribute fur.
 - 2. Fur=ragged \rightarrow Check attribute color.
 - 3. color=black \rightarrow Assign class=dangerous