
Foundations of Machine Learning Homework 3

Linear Models

Exercise 1 : Properties of the Sigmoid Function

This exercise regards some mathematical properties of the sigmoid function σ, which make it very suitable
for machine learning.

σ(x) =
1

1 + e−x

(a) Show that σ(−x) = 1− σ(x).

Answer

Starting from right side is much easier. Add and multiply by 1 in form of ex/ex.
1− σ(x) = 1− 1

1+e−x = 1+e−x

1+e−x − 1
1+e−x = e−x

1+e−x = e−x

1+e−x · ex

ex = 1
1+ex = σ(−x)

(b) Show that the derivative of the sigmoid function is ∂σ(x)
∂x = σ(x)(1− σ(x)).

Answer

This is best done by chain rule to the .−1 notation and using the result from a)
∂σ(x)
∂x = ∂

∂x [(1 + e−x)−1] = (−1) · (1 + e−x)−2 · e−x · (−1) = e−x

1+e−x · 1
1+e−x =

ex

ex · e−x

1+e−x · 1
1+e−x = σ(−x)σ(x) = (1− σ(x))σ(x)

Exercise 2 : Logistic Regression

For the task of binary sentiment classification on movie review texts, we represent each input text by the 6
features x1...x6 shown for three training examples together with the ground-truth class label (0 =negative,
1 =positive) in the following table.

Feat. Definition Example 1 Example 2 Example 3
x1 Count of positive lexicon terms 3 1 5
x2 Count of negative lexicon terms 2 5 2
x3 1 if “no“ in doc, 0 otherwise 1 0 1
x4 Count of 1st and 2nd pronouns 3 4 4
x5 1 if “!” in doc, 0 otherwise 1 1 0
x6 Word count ln(66) = 4.19 ln(119) = 4.77 ln(45) = 3.81

c Sentiment class 1 0 1

A logistic regression model is given as y(x) = σ(wTx) with

w = [0.21, 1.58,−1.36,−1.17,−0.17, 2.0, 0.14]T

.

(a) Calculate the class probabilites P (C = 1 | X = x;w) and P (C = 0 | X = x;w) for each example
and the given weights.

Answer
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Example 1:

P (C = 1 | X = x;w) = σ(wTx)

= σ([0.21, 1.58,−1.36,−1.17,−0.17, 2.0, 0.14] · [1, 3, 2, 1, 3, 1, 4.19]T )
= σ(3.1352)

= 0.9583

P (C = 0 | X = x;w) = 1− σ(wTx)

= 1− 0.9583

= 0.0417

Example 2:

P (C = 1 | X = x;w) = σ(wTx)

= σ([0.21, 1.58,−1.36,−1.17,−0.17, 2.0, 0.14] · [1, 1, 5, 0, 4, 1, 4.77]T )
= σ(−3.0222)

= 0.0464

P (C = 0 | X = x;w) = 1− σ(wTx)

= 1− 0.0464

= 0.9436

Example 3:

P (C = 1 | X = x;w) = σ(wTx)

= σ([0.21, 1.58,−1.36,−1.17,−0.17, 2.0, 0.14] · [1, 5, 2, 1, 4, 0, 3.81]T )
= σ(4.0734)

= 0.9833

P (C = 0 | X = x;w) = 1− σ(wTx)

= 1− 0.88

= 0.0167

(b) Compute ∆w for one iteration of the BGD algorithm with a learning rate of η = 0.1.

Answer

Remarks: y(x) were already calculated in (a); the values for ∆w are written individually here, but
would be summed directly in the BGD algorithm.

Example y(x) c δ = c− y(x) ∆w = η · δ · x
1 0.9583 1 0.0417 [0.004, 0.013, 0.008, 0.004, 0.013, 0.004, 0.017]T

2 0.0464 0 -0.0464 [−0.005,−0.005,−0.023,−0.0,−0.019,−0.005,−0.022]T

3 0.9833 1 0.0167 [0.002, 0.008, 0.003, 0.002, 0.007, 0.0, 0.006]T∑
[0.001, 0.016,−0.012, 0.006, 0.001,−0.001, 0.001]T

(c) For the updated weights w +∆w, calculate the class probabilites P (C = 0 | X = x;w +∆w) and
P (C = 0 | X = x;w+∆w) for each example. Compare them to your solution in (a); what can you
observe?

Answer
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w +∆w

= [0.21, 1.58,−1.36,−1.17,−0.17, 2.0, 0.14]T + [0.001, 0.016,−0.012, 0.006, 0.001,−0.001, 0.001]T

= [0.211, 1.596,−1.372,−1.164,−0.169, 1.999, 0.141]T

Example 1:

P (C = 1 | X = x;w) = σ(wTx)

= σ([0.211, 1.596,−1.372,−1.164,−0.169, 1.999, 0.141] · [1, 3, 2, 1, 3, 1, 4.19]T )
= σ(3.1724)

= 0.9598

P (C = 0 | X = x;w) = 1− σ(wTx)

= 1− 0.9598

= 0.0402

Example 2:

P (C = 1 | X = x;w) = σ(wTx)

= σ([0.211, 1.596,−1.372,−1.164,−0.169, 1.999, 0.141] · [1, 1, 5, 0, 4, 1, 4.77]T )
= σ(−3.0574)

= 0.0449

P (C = 0 | X = x;w) = 1− σ(wTx)

= 1− 0.0449

= 0.9551

Example 3:

P (C = 1 | X = x;w) = σ(wTx)

= σ([0.211, 1.596,−1.372,−1.164,−0.169, 1.999, 0.141] · [1, 5, 2, 1, 4, 0, 3.81]T )
= σ(4.1442)

= 0.9844

P (C = 0 | X = x;w) = 1− σ(wTx)

= 1− 0.9844

= 0.0156

Comparison: the gradient descent step adjusted the weights in such the way that each predicted class
moves (slightly) closer to the true label.

Exercise 3 : Regularization

Suppose we are estimating the regression coefficients in a linear regression model by minimizing the
objective function L.

L(w) = RSStr(w) + λwTw

The term RSStr(w) =
∑

(xi,yi)∈Dtr

(
yi −wTxi

)2 refers to the residual sum of squares computed on the
set Dtr that is used for parameter estimation. Assume that we can also compute an RSStest on a separate
set Dtest that we don’t use during training.

When we vary the hyperparameter λ, starting from 0 and gradually increase it, what will happen to the
following quantities? Explain your answers.
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(a) The value of RSStr(w) will. . .

2 remain constant.

2X steadily increase.

2 steadily decrease.

2 increase initially, then eventually start decreasing in an inverted U shape.

2 decrease initially, then eventually start increasing in a U shape.

Answer

The increasing regularization term moves the minimum point of L to a parameter vector that fits the
training data less well as measured by RSS alone. Hence the training residuals will only increase.

(b) The value of RSStest(w) will. . .

2 remain constant.

2 steadily increase.

2 steadily decrease.

2 increase initially, then eventually start decreasing in an inverted U shape.

2X decrease initially, then eventually start increasing in a U shape.

Answer

We initially remove the error due to overfitting, which has the potential to improve the fit on unseen
data. As λ → ∞, the norm of the learned parameters ∥w∥ → 0, and the test residuals eventually
increase again.
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