Foundations of Machine Learning Homework 3

Linear Models

Exercise 1 : Properties of the Sigmoid Function

This exercise regards some mathematical properties of the sigmoid function o, which make it very suitable

for machine learning.
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(a) Show thato(—z) =1 — o(x).

Answer

Starting from right side is much easier. Add and multiply by 1 in form of e* /e”.
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(b) Show that the derivative of the sigmoid function is olz) o(x)(1 —o(x)).

ox

This is best done by chain rule to the .~! notation and using the result from a)
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C L = o(—a)o(@) = (1 — o(a))o(x)

Exercise 2 : Logistic Regression

For the task of binary sentiment classification on movie review texts, we represent each input text by the 6

features ...z shown for three training examples together with the ground-truth class label (O =negative,
1 =positive) in the following table.

Feat. Definition Example 1 Example 2 Example 3
x1  Count of positive lexicon terms 3 1 5
x9  Count of negative lexicon terms 2 5 2
T3 1 if “no* in doc, 0 otherwise 1 0 1
x4  Count of 1st and 2nd pronouns 3 4 4
T5 1 if “!” in doc, O otherwise 1 1 0
x¢  Word count In(66) = 4.19 1In(119) =4.77 1In(45) = 3.81
c Sentiment class 1 0 1

A logistic regression model is given as y(x) = o(w’x) with

w = [0.21,1.58, —1.36, —1.17, —0.17,2.0,0.14]"

(a) Calculate the class probabilites P(C =1 | X = x;w) and P(C = 0 | X = x; w) for each example
and the given weights.

Answer



Example 1:

P(C=1|X=x;w) =0c(w!x)
7([0.21,1.58, ~1.36, —1.17, —0.17,2.0,0.14] - [1,3,2,1,3,1,4.19]7)
= (3.1352)
= 0.9583
P(C=0|X=x;w)=1-0c(wlx)
=1-0.9583
= 0.0417

Example 2:

P(C=1|X=x;w) =0(wlx)
([0.21,1.58, —1.36, —1.17, —0.17,2.0,0.14] - [1, 1, 5,0, 4, 1,4.77]T)
(~3.0222)
464
P(C=0|X=x;w)=1-0c(w!x)
=1-0.0464
= 0.9436

o
o
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Example 3:

P(C=1|X=x;w) =0(wlx)
= (0.21,1.58, —1.36, —1.17, —0.17, 2.0,0.14] - [1,5,2, 1,4, 0, 3.81]7)
= 0(4.0734)
= 0.9833
P(C=0|X=x;w)=1-0c(wlx)
=1-0.88
= 0.0167

(b) Compute Aw for one iteration of the BGD algorithm with a learning rate of n = 0.1.

Answer

Remarks: y(x) were already calculated in (a); the values for Aw are written individually here, but
would be summed directly in the BGD algorithm.

Example y(x) ¢ 60=c—y(x) Aw=7-J-x
1 0.9583 1 0.0417 [0.004, 0.013,0.008,0.004, 0.013, 0.004, 0.017]7
2 0.0464 0  -0.0464  [—0.005,—0.005, —0.023, —0.0, —0.019, —0.005, —0.022]T
3 0.9833 1 0.0167 [0.002, 0.008, 0.003,0.002, 0.007, 0.0, 0.006]
>y [0.001,0.016, —0.012, 0.006, 0.001, —0.001, 0.001]”

(c) For the updated weights w + Aw, calculate the class probabilites P(C = 0 | X = x; w + Aw) and
P(C =0|X =x;w + Aw) for each example. Compare them to your solution in (a); what can you
observe?

Answer


https://webis.de/downloads/lecturenotes/machine-learning/unit-en-logistic-regression.pdf#algorithm-batch-gradient-descent-logistic-loss

w + Aw
=[0.21,1.58,—-1.36,—1.17,—0.17, 2.0, 0.14]T + [0.001,0.016, —0.012, 0.006, 0.001, —0.001, 0.001]T
=[0.211,1.596, —1.372, —1.164, —0.169, 1.999, 0.141]T

Example 1:

PC=1|X=x;w) =o(w!x)
o([0.211, 1.596, —1.372, —1.164, —0.169, 1.999,0.141] - [1, 3,2, 1,3, 1,4.19]7)
(3.1724)
0.9598
P(C=0|X=x;w)=1-0c(wlx)
=1-0.9598
= 0.0402

Example 2:

P(C=1|X=x;w) =0o(w'x)
= 0([0.211,1.596, —1.372, —1.164, —0.169, 1.999, 0.141] - [1, 1, 5,0, 4, 1,4.77]7)
= o(—3.0574)
= 0.0449
PC=0|X=x;w)=1-0(w'x)
=1-10.0449
= 0.9551

Example 3:

P(C=1|X=x;w) =0o(wlx)
= 5([0.211,1.596, —1.372, —1.164, —0.169, 1.999, 0.141] - [1, 5,2, 1,4, 0, 3.81]7)
= 0(4.1442)
= 0.9844
PC=0|X=x;w)=1-0o(wlx)
=1-10.9844
= 0.0156

Comparison: the gradient descent step adjusted the weights in such the way that each predicted class
moves (slightly) closer to the true label.

Exercise 3 : Regularization

Suppose we are estimating the regression coefficients in a linear regression model by minimizing the
objective function L.
L(w) = RSS, (w) + A\w’w

2 .
The term RSSy (W) = -, viyen,, (yi — wTx;)" refers to the residual sum of squares computed on the
set Dy, that is used for parameter estimation. Assume that we can also compute an RSS;.; on a separate
set Dy.s that we don’t use during training.

When we vary the hyperparameter A, starting from 0 and gradually increase it, what will happen to the
following quantities? Explain your answers.



(a) The value of RSS;, (w) will...

remain constant.

steadily increase.

steadily decrease.

increase initially, then eventually start decreasing in an inverted U shape.

HiEInE

decrease initially, then eventually start increasing in a U shape.

Answer

The increasing regularization term moves the minimum point of £ to a parameter vector that fits the
training data less well as measured by RSS alone. Hence the training residuals will only increase.

(b) The value of RSSeq (W) will. ..

remain constant.

steadily increase.

steadily decrease.

increase initially, then eventually start decreasing in an inverted U shape.

MODUO

decrease initially, then eventually start increasing in a U shape.

Answer

We initially remove the error due to overfitting, which has the potential to improve the fit on unseen
data. As A — oo, the norm of the learned parameters ||w|| — 0, and the test residuals eventually
increase again.



