Exercise 1 : Properties of the Sigmoid Function

This exercise regards some mathematical properties of the sigmoid function σ , which make it very suitable for machine learning.

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

- (a) Show that $\sigma(-x) = 1 \sigma(x)$.
- (b) Show that the derivative of the sigmoid function is $\frac{\partial \sigma(x)}{\partial x} = \sigma(x)(1 \sigma(x))$.

Exercise 2 : Logistic Regression

For the task of binary sentiment classification on movie review texts, we represent each input text by the 6 features $x_1...x_6$ shown for three training examples together with the ground-truth class label (0 =negative, 1 =positive) in the following table.

Feat.	Definition	Example 1	Example 2	Example 3
x_1	Count of positive lexicon terms	3	1	5
x_2	Count of negative lexicon terms	2	5	2
x_3	1 if "no" in doc, 0 otherwise	1	0	1
x_4	Count of 1st and 2nd pronouns	3	4	4
x_5	1 if "!" in doc, 0 otherwise	1	1	0
x_6	Word count	$\ln(66) = 4.19$	$\ln(119) = 4.77$	$\ln(45) = 3.81$
c	Sentiment class	1	0	1

A logistic regression model is given as $y(\mathbf{x}) = \sigma(\mathbf{w}^T \mathbf{x})$ with

$$\mathbf{w} = [0.21, 1.58, -1.36, -1.17, -0.17, 2.0, 0.14]^T$$

- (a) Calculate the class probabilities $P(\mathbf{C} = 1 | \mathbf{X} = \mathbf{x}; \mathbf{w})$ and $P(\mathbf{C} = 0 | \mathbf{X} = \mathbf{x}; \mathbf{w})$ for each example and the given weights.
- (b) Compute $\Delta \mathbf{w}$ for one iteration of the <u>BGD algorithm</u> with a learning rate of $\eta = 0.1$.
- (c) For the updated weights $\mathbf{w} + \Delta \mathbf{w}$, calculate the class probabilites $P(\mathbf{C} = 0 | \mathbf{X} = \mathbf{x}; \mathbf{w} + \Delta \mathbf{w})$ and $P(\mathbf{C} = 0 | \mathbf{X} = \mathbf{x}; \mathbf{w} + \Delta \mathbf{w})$ for each example. Compare them to your solution in (a); what can you observe?

Exercise 3 : Regularization

Suppose we are estimating the regression coefficients in a linear regression model by minimizing the objective function \mathcal{L} .

$$\mathcal{L}(\mathbf{w}) = \mathsf{RSS}_{tr}(\mathbf{w}) + \lambda \mathbf{w}^T \mathbf{w}$$

The term $\mathsf{RSS}_{tr}(\mathbf{w}) = \sum_{(\mathbf{x}_i, y_i) \in D_{tr}} (y_i - \mathbf{w}^T \mathbf{x}_i)^2$ refers to the residual sum of squares computed on the set D_{tr} that is used for parameter estimation. Assume that we can also compute an RSS_{test} on a separate set D_{test} that we don't use during training.

When we vary the hyperparameter λ , starting from 0 and gradually increase it, what will happen to the following quantities? Explain your answers.

- (a) The value of $\mathsf{RSS}_{tr}(\mathbf{w})$ will...
 - remain constant.
 - steadily increase.
 - steadily decrease.
 - increase initially, then eventually start decreasing in an inverted U shape.
 - decrease initially, then eventually start increasing in a U shape.
- (b) The value of $RSS_{test}(\mathbf{w})$ will...
 - remain constant.
 - steadily increase.
 - steadily decrease.
 - increase initially, then eventually start decreasing in an inverted U shape.
 - decrease initially, then eventually start increasing in a U shape.