Concept Learning & Evaluation

Exercise 1: Rule-Based Learning in 2D

Consider the problem of rule-based learning in the following, rather different, feature space: The set of possible examples is given by all points of the x-y plane with integer coordinates from the interval [1,10]. The hypothesis space is given by the set of all rectangles. A rectangle is defined by the points (x_1, y_1) and (x_2, y_2) (bottom left and upper right corner). Hypotheses are written as $\theta = (x_1, y_1, x_2, y_2)$, and assign a point (x, y) to the value 1, if $x_1 \le x \le x_2$ and $y_1 \le y \le y_2$ hold, with arbitrary, but fixed integer values for x_1, y_1, x_2, y_2 from the interval [1, 10].

Hint: The maximally specific hypothesis h_{s_0} corresponds to a "zero-sized" rectangle that doesn't contain any points with integer coordinates; you may use the symbol (\bot, \bot, \bot, \bot) .

- (a) For the setting described above, formulate the most general hypothesis h_{g_0} .
- (b) Clarify for yourself how the "more-general" relation \geq_g works in this setting, and check all that apply:

$$\square$$
 $(2,3,6,7) \ge_g (3,4,5,7)$

$$\square$$
 $(1, 1, 2, 8) \ge_g (1, 1, 3, 3)$

(c) Given a hypothesis $h: \theta = (2, 3, 5, 7)$, and an example $\mathbf{x} = (2, 7)$ with c = 0, determine two hypotheses h_1 and h_2 such that both are minimal specializations of h, and both are consistent with (\mathbf{x}, c) .

Hint: for the correct answers h_i , there must not exist any other hypothesis h' consistent with (\mathbf{x}, c) where $h \geq_g h'$ and $h' \geq_g h_i$.

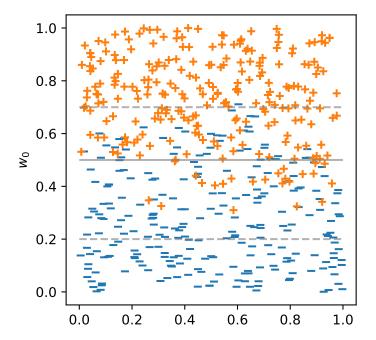
Exercise 2: Precision and Recall

In which of the following classification tasks do we aim for high precision, in which for high recall? Why?

- (a) Explosive detection using an airport x-ray machine.
- (b) Youtube video recommendations (classifying videos as relevant).
- (c) Choosing a good seat on a half-full train.
- (d) Spell checking (spelling error detection).

Exercise 3: Receiver Operating Characteristic (ROC)

Consider the following binary classification scenario, in which each point corresponds to an example (\mathbf{x}, c) with classes $c \in \{0, 1\}$, represented by - and +:



We want to examine different linear classifiers $y(\mathbf{x}) = w_0$ (horizontal lines) by calculating the effect of the choice of w_0 on the following two performance metrics:

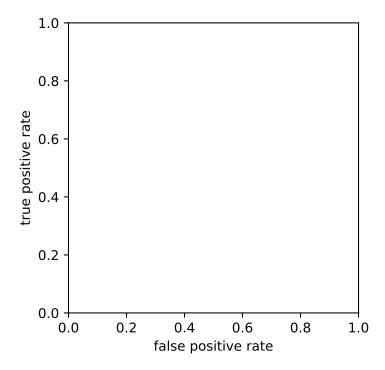
• the false positive rate, defined as

$$\mathsf{FPR} = \frac{\mathsf{FP}}{\mathsf{FP} + \mathsf{TN}} = \frac{\mathsf{FP}}{\mathsf{N}} = \frac{|\{(\mathbf{x}, c) \in D : y(\mathbf{x}) = 1 \land c = 0\}|}{|\{(\mathbf{x}, c) \in D : c = 0\}|},$$

• and the true positive rate (also known as sensitivity or recall), defined as

$$\mathsf{TPR} = \frac{\mathsf{TP}}{\mathsf{TP} + \mathsf{FN}} = \frac{\mathsf{TP}}{\mathsf{P}} = \frac{|\{(\mathbf{x}, c) \in D : y(\mathbf{x}) = 1 \land c = 1\}|}{|\{(\mathbf{x}, c) \in D : c = 1\}|}.$$

(a) The receiver operating characteristic (ROC) curve describes the relationship between the true positive and the false positive rate of a binary classifier at different decision thresholds. Varying the value of w_0 in the interval [0, 1], sketch the ROC curve for the classifier above.



- (b) What would the ROC curve of a slightly worse (but better than random guess) classifier look like?
- (c) What does the ROC curve of the optimal classifier look like?
- (d) What does the ROC curve of the worst possible classifier look like? What went wrong? How could this classifier be rectified?
- (e) What does the ROC curve of a random classifier look like that uses w_0 as its decision probability?
- (f) How does this relate to forming a classifier from a regression model? Use the terms of bias and threshold.