Neural Networks

Exercise 1 : Perceptron Learning

In this exercise, you design a single perceptron with two inputs x_{1} and x_{2}. This perceptron shall implement the boolean formula $A \wedge \neg B$ with a suitable function $y\left(x_{1}, x_{2}\right)$. Use the values 0 for false and 1 for true.
(a) Draw all possible examples and a suitable decision boundary in a coordinate system.

(b) Draw the graph of the perceptron. The schematic must include x_{1}, x_{2}, and all model weights.

Answer

(c) Manually determine a set of suitable weights $\mathbf{w}=\left(w_{0}, w_{1}, w_{2}\right)$ from your drawings.

Answer

In our drawing the normal vector is in the direction of $(1,-1)^{T}$. So we set $w_{1}=1$ and $w_{2}=-1$. We use the intercept with x_{2}-axis at -0.5 to get $w_{0}: w_{0} \cdot 1+w_{1} \cdot 0+w_{2} \cdot-0.5=0 \Leftrightarrow w_{0}=-0.5$. Check for $(1,0)^{T}$:

$$
\text { heaviside }\left(\mathbf{w}^{T} \mathbf{x}\right)=\text { heaviside }\left((-0.5,1,-1) \cdot\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)\right)=\operatorname{heaviside}(0.5)=1
$$

Check for $(1,1)^{T}$:

$$
\text { heaviside }\left(\mathbf{w}^{T} \mathbf{x}\right)=\text { heaviside }\left((-0.5,1,-1) \cdot\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)\right)=\text { heaviside }(-0.5)=0
$$

Exercise 2 : Perceptron Learning

Why can the boolean formula $A X O R B$ not be learned by a single perceptron? Justify your answer with a drawing.

Answer

The function for $A X O R B$ cannot be implemented by a single perceptron because the data is not linearly separable; can be visualized as follows, with A along the x-axis, and B along the y-axis:

$$
\begin{array}{ll}
+ & - \\
- & + \\
\hline
\end{array}
$$

Clearly, there exists no single line through this space such that all the positive examples lie on one side, and all the negative examples on the other.

Exercise 3 : Parameters of the Multilayer Perceptrons

In this exercise, you analyze the number of weights (parameters) of multilayer perceptrons. We use the notation from the lecture (e.g., slide ML:IV-104), where multilayer perceptrons have d layers, p attributes, hidden layer i with l_{i} units, and an output layer with k units.
(a) Let $d=4, p=7, l_{1}=5, l_{2}=3, l_{3}=3$, and $k=4$. Draw the graph of the multilayer perceptron.

Answer

Connections are omitted here (fully connected from one layer to next, except that "(1)" have no input connection); " \bigcirc " are variable nodes; " 1 " are constant / bias nodes.

(b) Calculate the number of weights in the multilayer perceptron of (a).

Answer

$8 \cdot 5+6 \cdot 3+4 \cdot 3+4 \cdot 4=40+18+12+16=86$
(c) Calculate the number of weights in the multilayer perceptron of (a) but with each l_{i} doubled, i.e., $l_{1}=10, l_{2}=6, l_{3}=6$. Has the number of weights doubled as well?

Answer

$8 \cdot 10+11 \cdot 6+7 \cdot 6+7 \cdot 4=80+66+42+28=216$
(d) Let $f\left(p, l_{1}, \ldots, l_{d-1}, k\right)$ be a function that computes the number of weights in the general case. Write down an expression for f.

Answer
$f\left(p, l_{1}, \ldots, l_{d-1}, k\right)=(p+1) \cdot l_{1}+\sum_{i=2}^{d-1}\left(l_{i-1}+1\right) \cdot l_{i}+\left(l_{d-1}+1\right) \cdot k$

