
Chapter NLP:IV

IV. Text Representation Models
❑ Introduction to Text Representation Models
❑ Bag of Words / Vector Space Model
❑ Similarity Measures in Natural Language Processing
❑ Statistical Language Models / Sequence Modelling
❑ Topic Models
❑ Topic Models – Evaluation and Variants
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Introduction to Statistical Language Models

Classic processing model for language:

Lexicon Grammer

Parser
OUTPUT: Analyzed

Sentence
INPUT: Natural

Language

Statistical aspects of language

❑ The lexical entries are not used equally often
❑ The grammatical rules are not used equally often
❑ The expected value of certain word forms or word form combinations depends

on the technical language used (Sub Language)

NLP:IV-37 Text Representation Models © NIEKLER, ECKART 2020



Introduction to Statistical Language Models

Question: Is a sentence S, given by a sequence of word forms, a correct sentence
of a language L?

How can a computer answer this question?

1. Listing of all sentences of language L and search for sentence S in this list. →
Not possible for Natural Language

2. Create construction rule (grammar) for L and check sentence S

❑ Natural language is very complex (inclusion of dialects, linguistic features)

❑ Checking of S is a complex operation

❑ What about semantic correctness?

3. Probabilistic Language Model: Calculation of the probability that S is a
correct sentence of L. (probability that S occurs in a text of language L).
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Introduction to Statistical Language Models

Basis of calculation is the distribution of word forms in texts of language L.

❑ Counting the occurrence of word form combinations

❑ Determination of the probabilities for the succession of word forms

❑ Calculation of the probability of the sentence S from the individual
probabilities of the word form sequence of S

In texts of the language L occur "meaningful" word form combinations

❑ Consideration of both syntactic and semantic aspects
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Statistical Foundations

Notation: (See Probability theory for details and more background)

❑ Let X be a random variable with a finite set V (X) of m events.
❑ Let |X = x| be the number of events where X has the value x

( i.e. x ∈ V (X)).
❑ The probability of occurrence of xi ( abbreviation P (xi) is:

P (X = xi) =
|xi|∑m
j=1 |xj|

Let W be the occurrence of a particular word form wi from the set of m word forms
of a text. The probability of occurrence of the i-th word form wi is then:

P (W = wi) =
|wi|∑m
j=1 |wj|
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Statistical Foundations

Conditional probability: The probability for the occurrence of an event A under
the condition that the event B has already occurred is called conditional probability
P (A|B).

P (A|B) =
P (A,B)

P (B)

If A and B are independent of each other, then:

P (A,B) = P (A) · P (B)

The conditional probability of independent events is:

P (A|B) = P (A)

Example: The conditional probability of the succession of two word forms is:

P (W2 = wj|W1 = wi) =
|W1 = wi,W2 = wj|

|W1 = wi|
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Statistical models of language

Intuition: Assign a probability to all sequences of word forms of length n, i.e.

P (W1,n = w1,n) For all sequences w1,n.

W1,n is a sequence of n random variables w1, w2, . . . , wn, each of which can take any
word form as a value, and w1,n is a concrete sequence of word forms.

This sequence can be calculated based on the generalized Bayesian rule.

P (w1,n) = P (w1) · P (w2|w1) · P (w3|w1,2) · . . . · P (wn|w1,n−1)
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Statistical models of language

A sequence of wordforms can be considered a conditional probability.

For two wordforms we have

P (wi, wj) = P (wi) · P (wj|wi)

For three wordforms we have

P (wi, wj, wk) = P ((wi, wj), wk) (1)
= P (wi, wj) · P (wk|wi, wj) (2)
= P (wi) · P (wj|wi) · P (wk|wi, wj) (3)
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Statistical models of language

Generalising (3), the probability of any sentence of length n can be stated as:

P (w1, w2, w3, . . . , wn) = P (w1) · P (w2|w1) · P (w3|w1, w2) . . . P (wn|w1, w2, w3, . . . , wn−1)

Using the maximum likelihood estimate we can compute this probability by
counting the occurrences of wordforms:

P (w1, w2, w3, . . . , wn) =
|w1|∑m
k=1 |wk|

· |w1, w2|
|w1|

· |w1, w2, w3|
|w1, w2|

. . .
|w1, w2, w3, . . . , wn−1, wn|
|w1, w2, w3, . . . , wn−1|

=
|w1, w2, w3, . . . , wn−1, wn|∑m

k=1 |wk|
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Statistical models of language

Example: Text of Language L = Training Data (For preparation of probabilities)

❑ Mr. Schuhmann reads a book.

❑ Mr. Schuhmann eats a loaf of bread.

❑ Mrs. Mueller eats chicken.

Do the following sentences belong to the language L?

❑ Mr. Schuhmann eats a loaf of bread.

❑ Mr. Schuhmann eats chicken.

❑ Mr. Schuhmann reads a loaf of bread.

❑ Mrs. Mueller reads a book.
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Statistical models of language

For conditional probability of combination of two word forms we defined:

P (wj|wi) =
|wi, wj|
|wi|

Examples:

❑ P(Schumann|Mr.) = |Mr., Schuhmann|/|Mr.|

❑ P(reads|Schumann) = |Schuhmann, reads|/|Schuhmann|

❑ P(a|reads) = |a, reads|/|reads|

❑ P(reads|Mueller) = |Mueller, reads|/|Mueller|
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Statistical models of language

For the succession of three word forms we get:

P (wi, wj, wk) = P ((wi, wj), wk) = P (wi, wj)·P (wk|wi, wj) = P (wi)·P (wj|wi)·P (wk|wi, wj)

❑ P(Mr,Schuhmann, reads) = P(Mr.) · P(Schumann|Mr.) · P(reads|Mr.,
Schuhmann)

❑ P(Schumann, reads, a) = P(Schuhmann) · P(reads|Schuhmann) ·
P(a|Schuhmann, reads)

❑ . . .
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Statistical models of language

For the entire set, we obtain according to the maximum likelihood estimate:

P (w1, w2, w3, . . . , wn) =
|w1|∑m
k=1 |wk|

· |w1, w2|
|w1|

· |w1, w2, w3|
|w1, w2|

. . .
|w1, w2, w3, . . . , wn−1, wn|
|w1, w2, w3, . . . , wn−1|

=
|w1, w2, w3, . . . , wn−1, wn|∑m

k=1 |wk|

❑ P(Mr., Schuhmann, reads, a, book) =
|Mr., Schuhmann, reads, a, book|/Total word count

❑ P(Mr., Schuhmann, reads, a, loaf, of, bread) =
|Mr., Schuhmann, reads, a, loaf, of, bread|/Total word count

❑ P(Mrs., Mueller, reads, a, book) =
|Mrs., Mueller, reads, a, book|/Total word count
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Statistical models of language

Summary: Approach up till now not really convincing

❑ To compute the probability of any sentence we would have to compute the
occurrence of any combination of n wordforms of the total vocabulary N of
some language (n ∈ N )

– Huge list

– Only possible for some specific corpus, not for language L in general

❑ Insufficient treatment of sentences that do not appear in the trainings corpus

– Sentences not contained in the trainings corpus are being assigned
probability 0 this happens, even if we only change wordorder

– However, any trainings corpus can only contain a finite number of
sentences

– We do not adequately compute the probability of sentences that do not
occur in the trainings corpus (in fact, this is the majority of sentences)

– We call this: The model fails to generalize the problem
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Statistical models of language

Evolution 1: Usage of Bi- and Trigrams

❑ Observation: Relationships between word forms in a sentence are strongly
localized. Word forms are grouped into phrases.

❑ The probability of occurrence of word form wi is strongly influenced by
remaining word forms of same phrase and less strongly influenced by word
forms of other phrases. However, this is not exploited by the n-gram model.

❑ It is enough to approximate the probability of occurrence of word forms. Only
a few predecessors have to be considered.

– Sufficient: use of only 2 preceding word forms
– More predecessors hardly bring more accuracy, however, increase the

computational effort enormously
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Statistical models of language

The n-gram model

Assumption that only the preceding n− 1 word forms are of influence on the
probability of the next word form, where n = 3 ( hence tri-gram ).

P (wn|w1, . . . , wn−1) = P (wn|wn−2, wn−1)

P (w1,n) = P (w1) · P (w2|w1) · P (w3|w1,2) · . . . · P (wn|wn−2, wn−1)

= P (w1) · P (w2|w1) ·
n∏

i=3

P (wi|wi−2,i−1)

=

n∏
i=1

P (wi|wi−2,i−1)
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Statistical models of language

The n-gram model

❑ Considering at most triple combinations of word forms allows a strong
reduction of complexity (regarding possible combinations).

❑ Probability of sentence S not immediately 0, if S does not occur in the training
corpus. The main thing is that all combinations of 2 and 3 consecutive word
forms in S occur in the training corpus.

❑ Nevertheless, difficulty with extremely rare word forms: If such a word form
occurs in S, the probability is high that one of the trigrams does not occur in
the corpus, therefore P(S) = 0.
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Statistical models of language

Evolution 2: Smoothing – Generalization and zeros

❑ Handle problem of extremely rare word forms or word forms that do not occur
in the training corpus.

❑ Evolution

– Backing Off Smoothing: Falling back to n-grams of lower level in case of
missing information

– Discounting: Subtracting a small amount from the probabilities computed
using the training corpus and distributing them to word form combinations
that did not occur

• Good Turing Smoothing
• Laplace Smoothing
• Kneser-Ney Smoothing
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Statistical models of language
Add-one (Laplace) smoothing

Example: Imagine the following text as as training input for a n-gram language
model. Additionally image a situation where you want to obtain the probability of a
sentence including the words w1, w2, w3, w4.

How much wood would a woodchuck chuck if a woodchuck could chuck wood?

He would chuck, he would, as much as he could, and chuck as much wood As

a woodchuck would if a woodchuck could chuck wood
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❑ We normally get the
probability of a word like:

P (W = wi) =
|wi|∑m
j=1 |wj|

❑ In this model we assign 0
probability to w1, w2, w3, w4.
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Statistical models of language
Add-one (Laplace) smoothing

Example: Imagine the following text as as training input for a n-gram language
model. Additionally image a situation where you want to obtain the probability of a
sentence including the words w1, w2, w3, w4.

How much wood would a woodchuck chuck if a woodchuck could chuck wood?

He would chuck, he would, as much as he could, and chuck as much wood As

a woodchuck would if a woodchuck could chuck wood
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❑ We can add 1 to each count:

Padd-1(W = wi) =
|wi|+ 1∑m

j=1 |wj|+ V

❑ In this model we assign
some probability to
w1, w2, w3, w4.
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Statistical models of language
Add-one (Laplace) smoothing

In general we could define the calculation of the probabilities of the n-grams as:

Padd-1(W = wi) =
|wi| + 1∑m

j=1 |wj| + V

Padd-1(wn|wn−2, wn−1) =
|wn−2, wn−1, wn| + 1

|wn−2, wn−1| + V

We introduce pseudo counts like:

|wi|∗ = (|wi| + 1)×
∑m

j=1 |wj|∑m
j=1 |wj| + V

where V is the total number of possible (N-1)-grams (i.e. the vocabulary size for a
bigram model)
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Example
Bigram Model based on Berkeley Restaurant Project corpus:

Examples taken from Jurafsky & Martin
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Example
Bigram Model after Add-One smoothing:

Examples taken from Jurafsky & Martin
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Example
Effect of Add-One smoothing on reconstitued transition counts:

Examples taken from Jurafsky & Martin
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Statistical models of language

Good-Turing smoothing

❑ In Add-one too much probability mass is moved! (In fact, we only use it for
Naive Bayes with few unknown events)

❑ Basic idea: Use total frequency of events that occur only once to estimate
how much mass to shift to unseen events.

❑ Let Nk be the number of N-grams that occur k times.

– For bigrams, N0 is the number of bigrams of count 0, N1 is the number of
bigrams with count 1, etc.

|w|>1

|w|=1

|w|>1

|w|=1

|w|=0
We revisit all counts by:

|w|∗k−1 =
|w| ·Nk

Nk−1

All unseen words get the probability:

P (|w|0) =
N1∑
∀k Nk
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Statistical models of language
Perplexity

❑ Surprise of the model, w.r.t. new data → a.k.a “Held-out Log Likelihood”
❑ What is the probability of the words in test data under the pre-trained model?

Assumption:

❑ The lower the perplexity, the better model captures the prediction of word
sequences in the corpus (generalizes to the contents of the corpus)

Train Held Out Data

Testing DatasetTraining Dataset

Train Model Evaluate Model
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Statistical models of language
Perplexity

Perplexity is the inverse probability of the Held Out Data, normalized by the number
of words:

PP (W ) = P (w1, . . . , wn)
− 1

n

For trigrams

PP (W ) = N

√√√√ N∏
i=1

1

P (wi|wi−2, wi−1)

Minimizing perplexity is the same as maximizing probability

❑ Perplexity goes down from unigram to trigram models.
❑ Also smoothing, interpolation etc. raises probability (lowers perplexity) of the

model.
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Statistical models of language
Linear Interpolation

Idea: Use (n− 1)-gram probabilities to smooth n-gram probabilities

❑ Trigram combination of the sentence does not occur in the training corpus

– Exploiting the information about two-word form combination

❑ Bigram combination of the sentence does not occur in the training corpus

– Exploiting the information about the single word form

Implementation: Utilization of all three sources of information (tri-, bi- and
unigrams).

❑ But different weighting of the sources, as trigram is more informative than
bigram etc.
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Statistical models of language
Linear Interpolation

Idea: Use (n− 1)-gram probabilities to smooth n-gram probabilities

Instead of:

P (wn|w1, w2, . . . , wn−1) ≈
|wn−2, wn−1, wn|
|wn−2, wn−1|

we set:

P (wn|w1, w2, . . . , wn−1) ≈ λ1
|wn−2, wn−1, wn|
|wn−2, wn−1|

+ λ2
|wn−1, wn|
|wn−1|

+ λ3
|wn|∑k=1
m |wk|

with λ ≤ λi ≤ 1 and
∑

i λi = 1.

❑ λ can be set manually
❑ Additionally, automatic methods include Expectation Maximization (EM)

algorithms, e.g. Hidden Markov Models
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Statistical models of language
Back-off models

Idea: Different models are consulted in order depending on their specificity.

❑ Back-off n-gram models can back off through progressivly shorter histories
(3-gram example):

PBO(wn|wn−2, wn−1) =


(1− dwn−2,wn−1,wn)

|wn−2,wn−1,wn|
|wn−2,wn−1|

if |wn−2, wn−1, wn| > k

αwn−2,wn−1,wnPBO(wn|wn−1)

otherwise

❑ d is the probability reserved for unseen n-grams.
❑ α Probability mass left over in the discounting process.
❑ Discounting: Save off a bit of probability mass from some more frequent

events and give it to the events we’ve never seen
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Statistical models of language
Kneser-Ney Smoothing

Observation: "New York" is frequent, but "York" only occurs after "New"

❑ I want to drive to friends|York ...

❑ York is more common than friends (at least in news corpora)

❑ The unigram is useful exactly when we haven’t seen this bigram!

❑ We do not use "How likely is w?"

❑ We introduce Pcont(w): "How likely is w to appear as a novel continuation?"

– For each word, count the number of bigram types it completes

– Every bigram type was a novel continuation the first time it was seen

Idea: The unigram probability P (w) should not depend on the frequency of w, but
on the number of contexts in which w appears.
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Statistical models of language
Kneser-Ney Smoothing

We calculate how many times w appears as a novel continuation:

Pcont(wi)|{∀wi−1 : |wi−1, wi| > 0}|

and normalize by the total number of word bigram types:

Pcont(wi) =
|{∀wi−1 : |wi−1, wi| > 0}|

|{∀wj−1, wj : |wj−1, wj| > 0}|

NLP:IV-69 Text Representation Models © NIEKLER, ECKART 2020



Statistical models of language
Kneser-Ney Smoothing

The Kneser-Ney Smoothing PKN is then:

PKN(wi|wi−1) =
max(|wi−1, wi| − d, 0)

|wi−1|
+ λ(wi−1) · Pcont(wi)

λ is a normalizing constant for the probability mass which is discounted. Note,
|{∀wn : |wn−1, wn| > 0}| is the the number of word types that can follow wn−1

λ(wi−1) =
d

|wi−1|
|{∀w : |wi−1, w| > 0}|

❑ The parameter d is a constant which denotes the discount value subtracted
from the count of each n-gram, usually between 0 and 1.

❑ There is a recursion as a generalization for higher order ngrams see Jurafsky
& Martin
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