Chapter NLP:IV

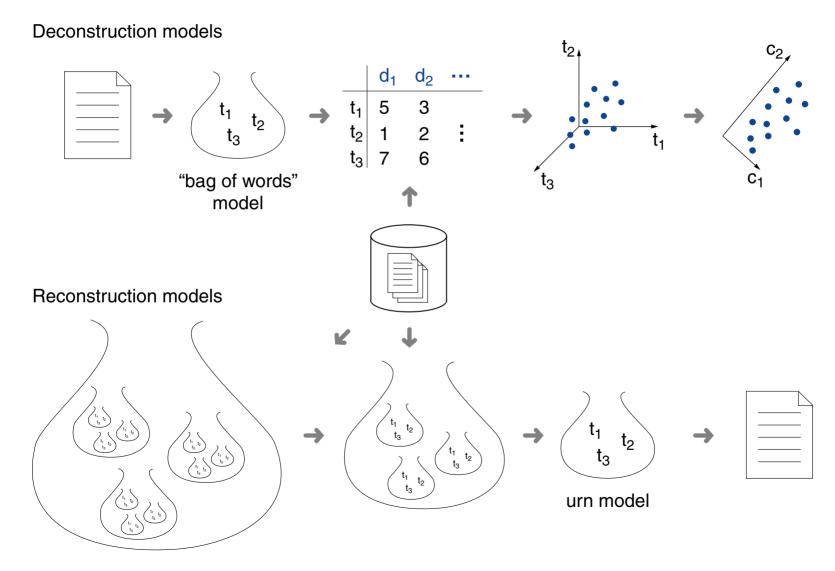
IV. Text Representation Models

- Introduction to Text Representation Models
- □ Bag of Words / Vector Space Model
- □ Similarity Measures in Natural Language Processing

NLP:IV-1 Text Representation Models © NIEKLER 2020

Introduction to Text Representation Models

How to represent Text? Digitally available texts



NLP:IV-2 Text Representation Models © NIEKLER 2020

Introduction to Text Representation Models

Bag of words

Bag of words hypothesis: "The frequencies of words in a document tend to indicate the relevance of the document to a query" [Turney, Pantel 2010]

Bag metaphor

- □ frequency is important
- order can be neglected

```
Example word list from presidential speech: shall(12), amendment(7), states(7), constitution (6), congress (4), united (4)
```

NLP:IV-3 Text Representation Models © NIEKLER 2020

Chapter NLP:IV

IV. Text Representation Models

- □ Introduction to Text Representation Models
- □ Bag of Words / Vector Space Model
- Similarity Measures in Natural Language Processing

NLP:IV-4 Text Representation Models © NIEKLER 2020

Vector Space Model [Salton et. al. 1975]

How to represent Text with the Bag of Words assumption?

Idea: Encode textual

- documents in vectors
- corpora in matrices

Data = event counts for applications like machine learning and statistics

Example corpus:

- \Box D_1 : Kim is leaving home.
- \square D_2 : Kim is at home.
- \square D_3 : Karen is leaving.

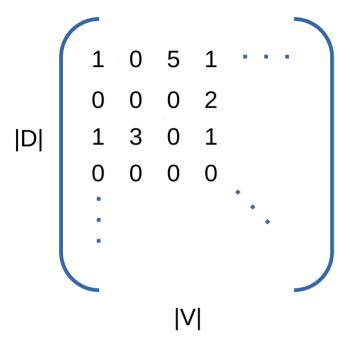
Dimensionality of vector space

- \Box $|D| \times |V|$ where |D|: Number of documents, |V|: Vocabulary
- \Box Example matrix dimensions: 3×7

	Kim	is	leaving	home		at	Karen
D_1	1	1	1	1	1	0	0
D_2	1	1	0	1	1	1	0
D_3	0	1	1	0	1	0	1

Vector Space Model [Salton et. al. 1975]

Document-Term-Matrix



- DTM's may get very large
- Events: Frequency counts of word types in each document
- □ 100% Bag-of-Words
- Very sparse (contains approx. 95% zeros)
- variations:
 - Binary event counts
 - paragraphs as documents
 - sentences as documents
 - additional n-grams (n > 1) as events

– ...

Vector Space Model [Salton et. al. 1975]

Special case for encoding sequences of text

One Hot coding: A finite sequence of binary numbers where only one number gets the high value (1) and the others are low (0).

- \square In case of text we have a sequence $\delta_{i,j} = \begin{cases} 1, & \text{if } w_j = w_i \\ 0, & \text{else} \end{cases}$
- \Box where *i* is the word position, *j* is the index in the vocabulary.
- Example:

	Kim	is	leaving	home	•	at	Karen
D_1.1	1	0	0	0	0	0	0
D_1.2	0	1	0	0	0	0	0
D							
D_1.5	0	0	0	0	1	0	0

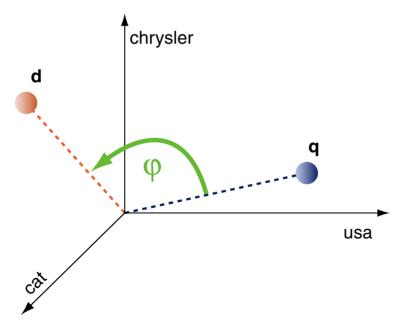
□ The Binary encoding for a single word has the dimensionality of the vocabulary.

Document representations D.

The set of index terms $T = \{t_1, \dots, t_m\}$ is typically composed of the word stems of the vocabulary of a document collection, excluding stop words.

The representation d of a document d is a |T|-dimensional vector, where the i-th vector component of d corresponds to a term weight w_i of term $t_i \in T$, indicating its importance for d. Various term weighting schemes have been proposed.

Example Similarity Function ρ for a document: Cosine Similarity



NLP:IV-8 Text Representation Models © NIEKLER 2020

Relevance Function ρ : Cosine Similarity

The scalar product $\mathbf{a}^T\mathbf{b}$ between two m-dimensional vectors \mathbf{a} and \mathbf{b} , where φ denotes the angle between them, is defined as follows:

$$\mathbf{a}^T \mathbf{b} = ||\mathbf{a}|| \cdot ||\mathbf{b}|| \cdot \cos(\varphi)$$

$$\Leftrightarrow \cos(\varphi) = \frac{\mathbf{a}^T \mathbf{b}}{||\mathbf{a}|| \cdot ||\mathbf{b}||},$$

where $||\mathbf{x}||$ denotes the L2 norm of vector \mathbf{x} :

$$||\mathbf{x}|| = \left(\sum_{i=1}^n x_i^2\right)^{1/2}$$

Let $\rho(\mathbf{q}, \mathbf{d}) = \cos(\varphi)$ be the relevance function of the vector space model.

Example

$$\mathbf{d} = egin{pmatrix} \mathsf{chrysler} & w_1 \ \mathsf{usa} & w_2 \ \mathsf{cat} & w_3 \ \mathsf{dog} & w_4 \ \mathsf{mouse} & w_5 \end{pmatrix} = egin{pmatrix} \mathsf{chrysler} & 1 \ \mathsf{usa} & 4 \ \mathsf{cat} & 3 \ \mathsf{dog} & 7 \ \mathsf{mouse} & 5 \end{pmatrix}$$

$$\mathbf{d_i} = \begin{pmatrix} \text{chrysler } 0.1 \\ \text{usa} & 0.4 \\ \text{cat} & 0.3 \\ \text{dog} & 0.7 \\ \text{mouse} & 0.5 \end{pmatrix} \text{,} \qquad \mathbf{d_j} = \begin{pmatrix} \text{chrysler } 0.2 \\ \text{usa} & 0.1 \\ \text{cat} & 0.5 \\ \text{dog} & 0.0 \\ \text{mouse} & 0.0 \end{pmatrix}$$

The angle φ between $\mathbf{d_i}$ and $\mathbf{d_i}$ is about 67° , $\cos(\varphi) \approx 0.38$.

Example Term Weighting: tf · idf

To compute the weight w for a term t from document d under the vector space model, the most commonly employed term weighting scheme $\omega(t)$ is $tf \cdot idf$:

- \Box tf(t,d) denotes the normalized term frequency of term t in document d. The basic idea is that the importance of term t is proportional to its frequency in document d. However, t's importance does not increase linearly: the raw frequency must be normalized.
- \Box df(t,D) denotes the document frequency of term t in document collection D. It counts the number of documents that contain t at least once.
- \Box idf(t,D) denotes the inverse document frequency:

$$idf(t, D) = \log \frac{|D|}{df(t, D)}$$

The importance of term t in general is inversely proportional to its document frequency

A term weight w for term t in document $d \in D$ is computed as follows

$$\omega(t) = tf(t, d) \cdot idf(t, D).$$

Example Term Weighting: tf · idf

To compute the weight w for a term t from document d under the vector space model, the most commonly employed term weighting scheme $\omega(t)$ is $tf \cdot idf$:

- \Box tf(t,d) denotes the normalized term frequency of term t in document d. The basic idea is that the importance of term t is proportional to its frequency in document d. However, t's importance does not increase linearly: the raw frequency must be normalized.
- \Box df(t,D) denotes the *document frequency* of term t in document collection D. It counts the number of documents that contain t at least once.
- lueta idf(t,D) denotes the inverse document frequency:

$$idf(t, D) = \log \frac{|D|}{df(t, D)}$$

The importance of term *t* in general is inversely proportional to its document frequency.

A term weight w for term t in document $d \in D$ is computed as follows

$$\omega(t) = \mathbf{tf}(t, d) \cdot \mathbf{idf}(t, D).$$

NLP:IV-11 Text Representation Models ©NIEKLER 2020

Example Term Weighting: tf · idf

To compute the weight w for a term t from document d under the vector space model, the most commonly employed term weighting scheme $\omega(t)$ is $tf \cdot idf$:

- \Box tf(t,d) denotes the normalized term frequency of term t in document d. The basic idea is that the importance of term t is proportional to its frequency in document d. However, t's importance does not increase linearly: the raw frequency must be normalized.
- \Box df(t,D) denotes the *document frequency* of term t in document collection D. It counts the number of documents that contain t at least once.
- \Box *idf*(t, D) denotes the *inverse document frequency*:

$$idf(t, D) = \log \frac{|D|}{df(t, D)}$$

The importance of term t in general is inversely proportional to its document frequency.

A term weight w for term t in document $d \in D$ is computed as follows

$$\omega(t) = \mathbf{tf}(t, d) \cdot \mathbf{idf}(t, D).$$

NLP:IV-12 Text Representation Models ©NIEKLER 2020

Example Term Weighting: tf · idf

To compute the weight w for a term t from document d under the vector space model, the most commonly employed term weighting scheme $\omega(t)$ is $tf \cdot idf$:

- \Box tf(t,d) denotes the normalized term frequency of term t in document d. The basic idea is that the importance of term t is proportional to its frequency in document d. However, t's importance does not increase linearly: the raw frequency must be normalized.
- \Box df(t,D) denotes the *document frequency* of term t in document collection D. It counts the number of documents that contain t at least once.
- \Box *idf*(t, D) denotes the *inverse document frequency*:

$$idf(t, D) = \log \frac{|D|}{df(t, D)}$$

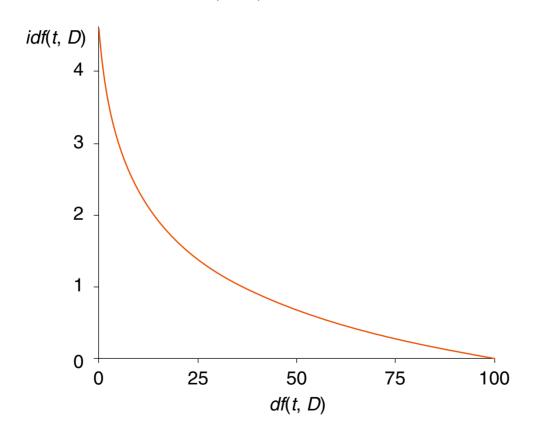
The importance of term t in general is inversely proportional to its document frequency.

A term weight w for term t in document $d \in D$ is computed as follows:

$$\omega(t) = tf(t, d) \cdot idf(t, D).$$

Term Weighting: tf · idf

Plot of the function $\mathit{idf}(t,D) = \log \frac{|D|}{\mathit{df}(t,D)}$ for |D| = 100.



Remarks:

- Term frequency weighting was invented by Hans Peter Luhn: "There is also the probability that the more frequently a notion and combination of notions occur, the more importance the author attaches to them as reflecting the essence of his overall idea." [Luhn 1957]
- The importance of a term t for a document d is not linearly correlated with its frequency. Several normalization factors have been proposed [Wikipedia]:
 - tf(t,d)/|d|
 - $1 + \log(tf(t,d))$ for tf(t,d) > 0
 - $k + (1-k)\frac{tf(t,d)}{\max_{t' \in d}(tf(t',d))}$, where k serves as smoothing term; typically k = 0.4
- Inverse document frequency weighting was invented by Karen Spärck Jones: "it seems we should treat matches on non-frequent terms as more valuable than ones on frequent terms, without disregarding the latter altogether. The natural solution is to correlate a term's matching value with its collection frequency."
 [Spärck Jones 1972]
- Spärck Jones gives little theoretical justification for her intuition. Given the success of *idf* in practice, over the decades, numerous attempts at a theoretical justification have been made. A comprehensive overview has been compiled by [Robertson 2004].

NLP:IV-15 Text Representation Models © NIEKLER 2020

Pruning of vocabulary in Vector Space Model

Vocabularies even of small collections can get very large (5.000 German newspaper documents $\rightarrow |V| > 300.000$ types)

- performance issue in machine learning tasks
- meaningful semantics

Pruning = filtering the vocabulary of a collection by minimum / maximum thresholds of token occurrence

Very useful preprocessing step to reduce vocabulary size:

- □ Count occurrence of types in the complete corpus
- keep only those terms which occur above / below a well-defined threshold

Term Frequency

- absolute pruning
 - sum all term occurrences in all documents filter terms which occur e.g. count(term) > 1 AND count(term) < 1000

Document Frequency

- relative pruning
- for each term count number of documents in which it is contained allows for filters like: terms which occur e.g. in
 - more than 99% OR
 - less than 1% of all documents

Remarks:

- Linguistic Preprocessing shall reduce / unify data for application specific purpose (See slides about text preprocessing)
- May contain various steps in row:
 - Data cleaning: encoding, spelling correction, duplicate filtering
 - Removing uninformative data: noise, duplicates, stopwords, dictionary lists
 - Unification: punctuation, capitalization, stemming, lemmatization
 - Pruning: remove low/high frequent terms
- Best setup dependent on final analysis task requirements
 - to be derived experimentally
 - or by analyst experience
- Caution: order of steps influences results!

NLP:IV-17 Text Representation Models © NIEKLER 2020