Natural Language Processing June 10, 2025
Lab Class NLP:IIl

By June 09, 2025, solutions for the following exercises have to be submitted: 1, 2, 3, and 4.

Exercise 1 : Text Preprocessing

One of the first steps in developing a text-based model is to preprocess the text data. This step is crucial as
it can significantly impact the effectiveness of the model. However, not all preprocessing steps are
beneficial for every task. For example, lower-casing might be problematic for Named Entity Recognition
(NER), where capitalization helps to distinguish between different meanings of words: Bush vs. bush;
Apple vS apple.

For each of the following text preprocessing steps, give an example of a situation or a task where
performing that step would likely reduce the effectiveness of a model trained on the preprocessed data and
briefly explain why that might happen.

(a) Stemming
(b) Lemmatization
(c) Stopword removal

(d) Removing URLs

(e) Removing all non-alphanumeric characters

Exercise 2 : Regular Expressions

(a) Write regular expressions that match the following patterns:
(al) A sequence of alphabetic strings, i.e., strings that contain only letters, e.g., abc, DEfg, etc.

(a2) All strings that contain the substring abc followed by any number of characters,
e.g., abc, abed, abcl23, abe ! @#, etc.

(a3) All strings that start with exactly one uppercase letter, followed by any number of characters
except uppercase letters, and end with either a period, exclamation mark, or question mark,
e.g., Abcd!, Efgl23.,butnot HIj12k34>?.

(ad4) All strings that start at the beginning of the line with an integer and that end at the end of the
line with an alphabetic character.

(b) Consider the following regular expressions.

(b1) Which of the following inputs will be matched by the regular expression

~.*[aeiou] .* (ist|ism|ant|er|or)$

|:| teacher |:| bigger D important

|:] inferior |:| artist D ant

Describe the inputs accepted by the regex in your own words.
(b2) Which of the following inputs will be matched by the regular expression

~.*[aeiou]ling$
[] singing [] playing [] walking [] seeing [] driving

Describe the inputs accepted by the regex in your own words.
(b3) The following regular expression should match email addresses:
~"a-zA-Z20-9_.-1+@[a-zA-Z0-9-1+\.[a-2zA-Z0-9-.]+5$
Which of the following strings will be matched by the regular expression?

max.mustermann @uni-weimar.de
max.mustermann @uni-weimar
max.mustermann @uni.weimar.de
max.mustermann @uni.weimar.
Max.Mustermann @ Uni-Weimar.DE

N

(c) Consider the following algorithm Tokenize, which uses regular expressions to segment a given
sequence d into tokens:

Tokenize(d)
alwayssep="[2! ()\"\/\\[]1"]
clitic="(2:"|:|-|"s|’'d|'m|"11|"rel|’ve|n"t)"
. Apply s/$alwayssep/ $& /g to d.
. Apply s/(\D),/\1_,, /g and s/, (\D)/_, \1/g to d.
. Apply s/\s’/$&_ /g and s/ (\W)’'/\1_ /g to d.

. Apply
Split

g o w N

s/$clitic\s/ _$&/g and s/ ($clitic) (\W)/ _\1 \2/g to d.
d by whitespace (/\s+/) to obtain a list of tokens T.

Manually execute the tokenization algorithm Tokenize on the given sequence d; by showing the
state of d; after each step. Fill in the table below:

» Show the exact string after each step 1-5.

d; Thomas’ note_said, that: “7:30am,_isn’t_great :(”

Exercise 3 : Regular Expressions 111

(a) Come up with regular expressions that match the following word patterns. Your expression must:

* Match all provided examples.

* Exclude incorrect examples (e.g., using . = will not be accepted).

(a2) Match words containing exactly 5 characters. Examples: hello, world, input

(a3) Match words containing exactly 4 characters, starting with 10. Examples: 1ove, long, loop

(a4) Match words containing at least 10 characters. Examples: independence, expression,

traditional

(a5) Match words made of lowercase letters only. Examples: apple, tree, lowercase

(a6) Match years from the 18th century (1700-1799). Examples: 1700, 1725,1799

(b) Which of the following inputs will be matched by the regular expression
"#[A-Fa-f0-9]1{6}$
Which of the following strings will be matched?

[] #FF5733 [] FF5733 [] #GH1234
[] #alb2c3 [] #12345

Describe the inputs accepted by the regex in your own words.

Exercise 4 : Regular Expressions

Write a regular expression that matches an ISO datetime format, which consists of a date and time
expressed in coordinated universal time (UTC), with the format YYYY-MM-DDTHH:MM: SSZ. The T
separates the date and time, the Z indicates UTC time zone, and the time is in 24-hour format.

Your regular expression should:

* Match valid ISO datetime strings, but not match invalid ones

» Allow for leading zeros in the month and day fields (e.g. 2023-05-07T11:23:45% is a valid
match)

* Only match UTC time zone (Z), not other time zone abbreviations (e.g.
2019-01-01T00:00:00-0800 is not a valid match)

* Be able to extract UTC datetime strings contained within arbitrary text (e.g.,
"2023-05-07T11:23:45Z" is a valid match but 12023-05-07T11:23:45Z or
A2023-05-07T11:23:457 are not).

Exercise 5 : Writing a tokenizer

Write a function
def tokenize (text: str) —> list[str]

in Python that takes in a text and outputs a list of tokens. You are only allowed to use standard Python
imports (especially re for regular expressions). Your tokenizer should represent the following as a single
token:

* Dates (e.g., 01/01/70,01-01-1970,01.01.1970,01. Jan.)
* Numbers (e.g.,0.5,0, 5,100 000,100"000)

* “Hashtags” (e.g., #Hashtag)

Abbreviations (e.g., U.S.A.)

Come up with at least one additional type of token and implement it in your tokenizer. Submit your
solution as a . py file.

