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Separate encoding of queries
and documents
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Cross-Encoder
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. Joint encoding of concatenated /I\
query-document pairs

o , Classifier
- Captures rich interactions through

attention mechanisms

- Achieves higher effectiveness in /]\
ranking tasks
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Proplem Statement

 Balancing Efficiency and Effectiveness:
. Bi-encoders offer efficient retrieval but lack interaction modeling

- Cross-encoders capture rich interaction but are computationally
Intensive

 Research Challenge:

- Can we enhance bi-encoder effectiveness using lightweight
models

. |s it possible to bridge the gap to cross-encoders without
porocessing raw text jointly?



Proposed Approach

. Utilise pre-computed embeddings from a bi-encoder
- Introduce a lightweight transformer to model interactions
- Process query and passage embeddings together

- Maintain efficiency by avoiding full text processing



Methodology

Model Architecture

- Embeddings: Pre-computed

using a bi-encoder model [ <)
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Transformer Encoder
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Methodology

Data Preparation

- Training Data based on standard
IR Dataset (MS MARCO)

- Samples consist of 64-way tuples
(1 query, 1 highly-ranked passage,
63 lower-ranked passages)

- Pre-compute embeddings for all
documents using a bi-encoder
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Preliminary .
TREC-DL 2019 judged

Results

run_name nDCG@10 | nDCG@64 | nDCG@100 | RR@10 | RR@64 | RR@100
all-MiniLM-L6-v2 0,636
Our Model 0,641

N



Preliminary Results

TREC-DL 2019 judged

run_name nDCG@10 | nDCG@64 | nDCG@100 | RR@10 | RR@64 | RR@100

all-MiniLM-L6-v2 0,573 0,574 0,936 0,937 0,938
Our Model 0,575 0,574 0,936 0,937 0,937
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Analysis of Results

e Observation: The lightweight model didn’t improve over the bi-
encoder

e Possible Reasons:
e Bi-encoder embeddings may lack rich interaction information

e The lightweight transformer might be insufficient to model
complex interactions

e Operating on fixed embeddings may inherently limit potential
gains
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Analysis of Results

e Observation: The lightweight model didn’t improve over the bi-
encoder

e Implications:

e The embeddings may not capture relationships between queries
and passages

e Need to consider architecture change, or end-to-end training
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Future Work

- Check if the model actually just learned cosine-similarity
. Increase model size (Embedding Model and Reranking Model)
- Try End-to-End Training

- Try different Datasets
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Methodology

[raining Process

- Trained for a single epoch to prevent overfitting

. Loss function: Margin-MSE

- Batch Size: 32 @ 600k Steps

- Applied dropout with a rate of O.1in transformer layers

- Used layer normalization to improve convergence
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